CHEMICAL ENGINEERING MODULE DESCRIPTIONS

Course Unit Title	English I
Course Unit Code	ENGL 1101
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	0
Practice (hour/week)	3
Laboratory (hour/week)	0
Year of Study	1
Semester when the course unit is delivered	1
Course Coordinator	Sevil G. ALIYEVA
Name of Lecturer (s)	-
Mode of Delivery	Seminar, Face to face teaching
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	Elementary English level grammar, reading, writing and
	listening skills.

Chemical engineering (CHEN) program, "Foreign languages-2" department

Course description:

ENGL 1101 provides students with pre-intermediate level structure and vocabulary, as well as cultural knowledge that is necessary for effective communication in this language. The Structures class focuses on acquiring knowledge of English grammar and the practical ability to apply this knowledge in oral and written discourse. The Communicative part is devoted to gaining practical competence in English by means of exercises in conversation, oral presentation, comprehension of texts, and writing skills. Students will be encouraged to read a variety of texts as well as chapters from textbooks so that they can pursue their undergraduate studies at the university without major difficulty. This module includes conversations, texts, letters, forms, tests and so on. The exercises fulfil a number of purposes. They reinforce and consolidate what has been heard, said, written and seen, thus teaching four main skills of language: listening, speaking, reading and writing. The course is designed to improve the students' presentation ability. At the end of the course they are expected to do an oral presentation.

Objectives of the Course:

This course aims to bring the students to a level that will enable them fulfil the requirements of main courses of their departments.

English -1 is aimed to:

- improve and update their English language productive skills;
- get new ideas and explore current issues in the English language;
- acquaint students with some writing skills to apply in their social life;
- develop Reading and Listening skills;
- provide opportunities for students to work in teams in order to develop their Speaking skills;
- provide students with language knowledge and skills which are essential for general communication purposes and help students develop positive attitudes towards the target foreign language;

• lead students to deliver oral presentations in order to enhance cooperation.

	earning Outcomes			
t th	e end of the course the student should be able to:	Assessment		
1	Focus on language functions and structures; 1,2,3			
2	Use pre-intermediate level of target language grammar and vocabulary in discussions and 3,4 talks;			
3	Write simple connected text on topics;	1,2,4		
1	Understand the main points of clear standard speech;	1,4		
5	develop pre-intermediate level reading, writing, listening, speaking, and presentation skills in the target language;	1,2,3,4		
6	Identify, find and analyse information that's needed for a particular task;	4		
7	Translate intermediate and upper intermediate level texts into native language;	4		
8	work cooperatively in teams and small groups. Assessment Methods: 1. Final Exam, 2. Midterm exam, 3. Presentation, 4. Seminars	4		
	Course's Contribution to Program			
		CL		
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.			
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.			
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.			
1	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.			
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.			
5	Ability to design systems, components, units and processes that meet the requirements, takin into account natural limitations such as economics, ecology, security and social aspects.	g 3		
1	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	5		
3	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.	3		

9	Ability to understa	nd professional, ethical, legal and security issues and the responsibilities	3				
	characteristic for e	stic for engineering.					
10	Ability to work pro	to work productively in multidisciplinary groups, especially in projects requiring					
	engineering skills a	gineering skills and to carry out all work in accordance with relevant laws, regulations,					
	standards, methods and guidelines.						
	CL: Contribution	n Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)					
	Course Content	ts					
Wee	ck Chapter	Topics	Exams				
	[1]	Reading: Who is who? Grammar spot: Word order. Present simple.					
1	Unit 1A,1B;	Speaking and Listening exercises.					
	pp.4-7						
	[1]	Reading: At the Moulin Rouge. Grammar spot: The Present Continuous.					
1	Unit 1C	Speaking and Listening exercises					
	pp.8-9						
	[1]	Reading: Devil's dictionary". Grammar spot: Defining relative clauses.					
2	Unit 1D	Speaking and Listening exercises.					
	pp,10-11						
	[1]	Practical English: at the airport. Writing: describing yourself.					
3	Unit 1	Revise and check: What do you remember? What can you do?					
	pp. 12-15						
	[1]	Reading: Right places, wrong time. Grammar spot: Past simple regular					
3	Unit 2A	and irregular verbs. Speaking and Listening exercises.					
	pp.16-17						
	[1]	Reading: A moment in time. Grammar spot: Past continuous. Speaking					
4	Unit 2B	and Listening exercises.					
	pp.18-19						
	[1]	Reading: Fifty years of pop. Grammar spot: Questions with and without					
5	Unit 2C	auxiliary. Speaking and Listening exercises.					
	pp.20-21						
	[1]	Reading: One October evening. Grammar spot: so, because, but,					
5	Unit 2D	although. Speaking and Listening exercises.					
	pp.22-23						
	[1]	Practical English: at the conference hotel. Writing: the story behind a					
6	Unit 2	photo. Revise and check: What do you remember? What can you do?					
	pp.24-27						
	[1]	Reading: Where are you going? Grammar spot: going to, Present continuous. Speaking and Listening exercises.					
7	Unit 3A	continuous. Speaking and Listening exercises.					
	pp.28-29						

7	[1] Unit 3B	Reading: The pessimist's phrase book. Grammar spot: will/won't predictions). Speaking and Listening exercises.	
	pp.30-31		
8			Midterm
0			exam
	[1]	Reading: I will always love you. Grammar spot: will /won't (promises,	
9	Unit 3C	offers, decisions). Speaking and Listening exercises.	
	pp.32-33		
	[1]	Reading: I was only dreaming. Grammar spot: review of tenses: present, past and future. Speaking and Listening exercises.	
9	Unit 3D	past and future. Speaking and Listening exercises.	
	pp.34-35		
	[1]	Practical English: restauraant problems. Writing: an informal letter.	
10	Unit 3	Revise and check: What do you remember? What can you do?	
	pp.36-39		
	[1]	Reading: From rag to riches. Grammar spot: Present perfect (experience) + ever, never; Present perfect and Past simple. Speaking and Listening	
11	Unit 4A	exercises.	
	pp.40-41		
11	[1]	Reading: Family conflict. Grammar spot: Present perfect simple + yet, just already. Speaking and Listening exercises.	
	Unit 4B	Just aready. Speaking and Eistening exercises.	
	pp.42-43		
	[1]	Reading: Faster, faster. Grammar spot: comparative.	
12	Unit 4C	Asas,/lessthan. Speaking and Listening exercises.	
	pp.44-45		
13	[1]	Reading: The world's friendliest city. Grammar spot: superlative (+ ever+ present perfect). Speaking and Listening exercises.	
	Unit 4D	present perfect). Speaking and Listening excretises.	
	pp.46-47		
	[1]	Practical English: lost in San Francisco. Writing: describing where you live.	
13	Unit 4	Revise and check: What do you remember? What can you do?	
	pp.48-51		
14	[1]	Reading: Are you party animals? Grammar spot: uses of the infinitive (with" to"). Speaking and Listening exercises.	
	Unit 5A	(to). Speaking and Eistening excretises.	
	pp.52-53		
	[1]	Reading: What makes you feel good? Grammar spot: verb + ing.	
15	Unit 5B	Speaking and Listening exercises.	
	pp.54-55		
			Final exam

1. Clive Oxenden, Christina Latham-Koenig, Paul Seligson - New English File (Pre-intermediate Student's book and Work book), Oxford University Press, 2010

Supplementary Course Material:

- 1. John Eastwood, Oxford Practice Grammar-Intermediate, Oxford, 2009
- 2. Tom Hutchinson. English for Life, Oxford Press, 2010
- 3. Michael McCarthy, Felicity O'Dell. English Vocabulary in use, Second Edition. Oxford Press, 2010
- 4. Raymond Murphy. Essential Grammar in Use, Cambridge University Press, 2013
- 5. Stuart Redman, English Vocabulary in Use. Pre-intermediate. Cambridge. 2002

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University Guidelines for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration	Total	
Acuvites	Nulliber	(hour)	Workload(hour)	
Course duration in class	14	3	42	
Presentation	1	10	10	
Tutorials	14	1	14	
Self-study	14	5	70	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	10	10	
Final Examination	1	3	3	
Preparation for final exam	1	30	30	
Total Workload	180			
Total Workload/30(h)	180/30			
ECTS Credit of the Course	6			

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

department

Course Unit Title	General Chemistry I
Course Unit Code	CHEM 1101
	CHEM 1101
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	1
Semester when the course unit is delivered	1
Course Coordinator	Minira M. Aghahuseynova
Name of Lecturer (s)	Minira M. Aghahuseynova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-
	1

Course description:

Historical development of chemistry science. Matter and measurements. Classification of inorganic compounds. Electronic structure of atom and molecule. Atomic properties and Periodic table. The main Laws of chemistry. Bonding Theory. Hybridization of AO. Classification and nomenclature of complex compounds. Bases of Thermodynamics.

Objectives of the Course:

The aim of the subject is formation of real comprehension of the world- scientific view of contemporary theories based on interrelation of nature laws and phenomena, systematization and deepening of students' knowledge in the field of chemistry. The main goal of the subject in the process of training is to master theoretical and practical basis of analytical chemistry for its application in solution of various ecological problems, analysis of water, seil, air and in chemical technology industry.

Lear	Learning Outcomes			
At th	e end of the course the student will be able to	Assessment		
1	Define principal chemical concepts. Explain chemical composition and gas laws.	1		
2	Name the inorganic compounds.	1,2,3		
3	Explain unit systems. Explain basic and derivative quantities.	1		

4	Solve problems with the help chemical reactions. Define Chemical reactions. Compose reaction stoichiometry.		1			
5						
6	6 Define internal energy, state functions and Laws of thermodynamics. 1,3					
Asses	ssment Methods: 1	. Final Exam, 2. Presentation, 3. Midterm exam				
Cour	se's Contribution	to Program				
			CL			
1		omplex issues and tasks by using the principles of mathematics, physics, emical engineering.	5			
2	 chemistry and chemical engineering. Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 					
3	•	e basics of mathematics, algorithmic principles and methods of computer e modeling, to design of chemical engineering systems, analyze and interpret cal methods.	4			
4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.						
5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 3						
6						
7						
8			3			
9						
 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 						
Cours	se Contents					
Week	Chapter	Topics	Exam			
1	[1]: Chapter 2, s: 4-40	Chemistry: Matter and measurement				
2	[1]: Chapter 1, s: 26-53	Atoms. Molecules and ions. Chemical and physical properties. Seminar 1: General consepts and stoichiometric laws of chemistry.				
3	[1]: Chapter 3, s:68-78	Stoichiometry: Chemical Calculations; Chemical reactions in aqueous solutions.				

	[1]: Chapter	The main	laws of chem	istry.	
4	1, s:14-26Seminar 2: Main concepts of quantum theory. Quantum numbers. Electron energy. Filling of energy levels and sublevels.				
5	[1]: Chapter 3, s:84-110	Atomic structure. Explaining the properites of elements.			
6	[1]: Chapter 3, s:110-133Electron configurations, atomic properties and Periodic table. Seminar 3: Contemporary approaches to Mendeleev's periodic law. Energetic characteristic of atoms.				
7					Midterm
		Chemical	bonds		
8	[1]: Chapter 4, s:140-167	Seminar 4		emical bonds. Types of molecular interaction.	
9	[1]: Chapter 5, s:192-239	Bonding	Theory and M	lolecular structure.	
		Hybridiza	tion of atomic	c orbitals	
10	[1]: Chapter 5, s:208-222	Seminar 5: Hybridization of atomic electron orbitals			
11	23, s:737-770				
	[1]: Chapter	Classifica	tion and nome	enclature of complex compounds	
12	23, s:1056- 1071	Seminar 6 compound		on theory of Werner. The structure of complex	
13	[1]: ChapterState of matter and Intermolecular forces.6, s:248-261				
	[2]: Chapter	Thermody	ynamics		
14					
15	[1]: Chapter 9, s:372-413	Thermoch	nemistry.		
16					Final
Recomm	nended Sources	<u> </u>			
TEXTB					
1.				Foster, Stacey Lowery Bretz, Chemistry. An Atoms-	Focused
2.				a@Company, London, 2018. p.1256 . able, Chemistry, Prentice Hall, Upper Saddle River,	United States,
Assessn	_				
Attenda	nce		0%	At least 75% class attendance is compulsory	

Presentation	20%	
Quiz	10%	
Seminar	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	28	28
Self-study	14	5	70
Total Workload	1	1	180
Total Workload/30(h)	180/30		
ECTS Credit of the Course			6

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology" department

Course Unit Title	Introduction to laboratory safety & hazardous materials
Course Unit Code	LAB 1101
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	4
Theoretical (hour/week)	2
Practice (hour/week)	-
Laboratory (hour/week)	-
Year of Study	1
Semester when the course unit is delivered	1
Course Coordinator	Leyla Z.Vezirova
Name of Lecturer (s)	Leyla Z.Vezirova
Name of Assistant (s)	-
Mode of Delivery	Face to Face
Language of Instruction	English
Prerequisites	-
Recommended Optional Programme Components	-

Course description:

Practicing safe science is an essential and fundamental responsibility of every laboratory worker. In this course, we will examine some common laboratory procedures, the hazards associated with these procedures, personal protective equipment that can be used to minimize associated with the laboratory accidents and emergency equipment that can be used in the event of specific types of laboratory accidents. In order to assure consumer safety and product quality, the biomedical and pharmaceutical industry is regulated by various government agencies. Compliance with the regulations and guidelines set forth buy these agencies is essential for successful product development, licensing and marketing. Therefore, we will examine some of the predominant regulations and the enforcing agencies.

Objectives of the Course:

Students should know more about lab safety culture, precautionary labels, Material Safety Data Sheets, using personal protective equipment, handling lab equipment safely, handling, storing and disposing of chemicals safely, using emergency equipment as well as safety planning.

Learning Outcomes

At th	e end of the course the student will be able to	Assessment
1	An understanding of Chemical Labeling & Safety. Demonstrate safe handling of	1,3
	chemicals and equipment in the laboratory	

2	An understanding of Good Lab Practice, Good Manufacturing Practice & Fire Safety	1,2,3
	Demonstrate knowledge of Good Laboratory Practices (GLPs), Good Manufacturing	
	Practices (GMPs) and Fire Safety	
3	Ability to analyze Regulatory Agencies Demonstrate familiarity with international and	2,3
	federal regulatory agencies that impact the work of Biotechnology	
4	An understanding of Emergency Equipment & Standard Operating Procedures Recognize	2,3
	and maintain various PPE and emergency equipment in a laboratory setting as well as	
	evaluating Standard Operating Procedures (SOPs) and safety plans.	
5		1,3
Asse	Understand and exercise professional and ethical norms. ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam	
	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics	
-	chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying	
	out the experiments and to obtain and extract chemical compounds using standard methods	3
	and syntheses.	
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer	
-	engineering in the modeling, to design of chemical engineering systems, analyze and	4
	interpret data using statistical methods.	
4	Ability to use the techniques, materials, skills and modern engineering tools which are used	
	in engineering and to carry out industrial and chemical processes, control them and to apply	
	chemical engineering principles at designing of these processes.	
5	Ability to choose and use existing technologies, materials while undertaking project tasks and	d
	solving these issues in chemical engineering and ability to eliminate malfunctions that may	y 4
	occur in industrial and chemical processes or in laboratory equipment.	
6	Ability to design systems, components, units and processes that meet the requirements, taking	g ,
	into account natural limitations such as economics, ecology, security and social aspects.	4
7	Ability to use the language skills to exchange and obtain some knowledge gained from the	
	foreign sources.	1
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and	2
	critically evaluate the results and to compare them.	3
9	Ability to understand professional, ethical, legal and security issues and the responsibilities	А
	characteristic for engineering.	4
10	Ability to work productively in multidisciplinary groups, especially in projects requiring	
	engineering skills and to carry out all work in accordance with relevant laws, regulations,	4
	standards, methods and guidelines.	
CL: (Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	

Week	Chapter	Topics	Exam
	[2] c.1,	Introduction to the course: The Business of Biotechnology: The Transformation of	
1	p.1.3-1.45	Knowledge into Products	
	p.1.5-1.45		
2	[3] ch.2,	The Lifecycle of Pharmaceutical Products	
2	p.9-35	Semnar: Introduction to the course: The Business of Biotechnology: The Transformation of Knowledge into Products	
3	[3] ch.4,	Introduction to Product Quality Systems. Biotechnology and the Regulation of	
5	p.59-85	Medical Food Products.	
	[2] -1 0	Documentation	
4	[3] ch.9,	Consistent Distants and the Description of Medical Food Droducts	
	p.74-90	Seminar: Biotechnology and the Regulation of Medical Food Products. Documentation	
5	[3] ch.11,	Quality Systems in the Production Facility. Quality Systems in the Laboratory	
5	p.103-190		
	[2] ch.7, p.	Minimizing, controlling, and managing hazards. Chemical management: inspections,	
	7.4-7.91	storage, wastes, and security.	
6	[2] ch.8, p.	Cominger Quality Systems in the Duaduation Regility Quality Systems in the	
	8.3-8.39	Seminar: Quality Systems in the Production Facility. Quality Systems in the Laboratory, Chemical management: inspections, storage, wastes, and security.	
7			Midterm
	[3] ch.21,	GMP, Quality Control/Quality Assurance Manager,	
8	p.157-165	Own , Quanty Control/Quanty Assurance Manager,	
	-	Fire Safety. Introduction to a Safe Workplace.	
9	[2] ch.2, p.	The safety. Infoluction to a safe workplace.	
	2.3-2.37	Seminar: GMP, Fire Safety	
	[2] ch.1, p.	Working Safely in the Laboratory:	
10	1.3-1.45		
	[2] ch.3, p.		
	3.3-3.47		
	[2] ch.5, p.	General Considerations and Physical Hazards.	
11	5.3-5.131	Seminar: Working Safely in the Laboratory, General Considerations and Physical Hazards	
	[4]	Good Laboratory Practice (FDA/GLP Regulations, The Good Automated Laboratory	
12	ch.2,3,4,5,	Practices, Implementing GLPs in a Non-GLP Analytical Laboratory)	
	p.25-160		
	[4]	Good Laboratory Practice (Controlling the Good Laboratory Practices Inspection	
13	ch.6,7,8,9,	Process, GLP Documentation, The FDA's GLP Inspection Program, The Future of the Good Laboratory Practice Regulations)	
	p.167-240		
	[0] 1 1	Seminar: GLP	
14	[2] ch.1, p. 1.3-1.45	Working Safely with Chemicals	
		Working Safaly with Tayia substances and Dislocical Acousts	
15	[2] ch.4, p.	Working Safely with Toxic substances and Biological Agents	
	4.1-4.47	Seminar: Working safely with chemicals	
16			Final exam
ecomn	nended Sour	rces	
	OOK(S)		

- 1. Martin Holtzhauer, Basic methods for the biochemical Lab, Springer, 2006.
- 2. Robert H., Hill J.R., David C., Laboratory safety fo chemistry students, Kindle Edition, 2005

Assessment				
Attendance	0%	Less than 75% class attendance results in NA grade		
Presentation	20%	k		
Quiz	10%			
Midterm Exam	20%	Written Exam		
Final Exam	50%	Written-Oral Exam		
Total	100%			

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry

University for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Material presented in the lecture as well as assigned readings will be included in testing.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated.
- Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration (hour)	Total Workload (hour)
Course duration in class	14	2	28
Presentation	1	5	5
Self-study	14	3	42
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload		1	120
Total Workload/30(h)			120/30
ECTS Credit of the Course			4

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

department

Course Unit Title	General Chemistry Laboratory
Course Unit Code	LAB 1102
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	4
Theoretical (hour/week)	0
Practice (hour/week)	0
Laboratory (hour/week)	2
Year of Study	1
Semester when the course unit is delivered	1
Course Coordinator	Minira M. Aghahuseynova
Name of Lecturer (s)	Minira M. Aghahuseynova
Name of Assistant (s)	Leyla Vazirova
Mode of Delivery	Laboratory
Language of Instruction	English
Prerequisites	CHEM 1101 General Chemistry I
Recommended Optional Program Components	-

Course description:

Historical development of chemistry science. Matter and measurements. Classification of inorganic compounds. Electronic structure of atom and molecule. Atomic properties and Periodic table. The main Laws of chemistry. Bonding Theory. Hybridization of AO. Classification and nomenclature of complex compounds. Bases of Thermodynamics.

Objectives of the Course:

The aim of the subject is formation of real comprehension of the world- scientific view of contemporary theories based on interrelation of nature laws and phenomena, systematization and deepening of students' knowledge in the field of chemistry. The main goal of the subject in the process of training is to master theoretical and practical basis of chemistry for its application in solution of various ecological problems, analysis of water, seil, air and in chemical technology industry.

Lear	Learning Outcomes					
At the	At the end of the course the student will be able to					
1	¹ Recognise the laboratory environment. Name laboratory equipments. Describe how they					
	securely/safely work with these equipment					
2	Express theoretical knowledge of chemistry with experimental methods.	1,4				
3	³ Express reaction products in terms of stoichiometric relations.					

4	Interpret and report results of experiments.						
5	Collect and report datas of experiments. Report results in a proper format.						
Asse	ssment Methods: 1	. Final Exam, 2. Presentation, 3. Lab.work, 4. Midterm					
Cour	se's Contributior	n to Program					
			CL				
1		omplex issues and tasks by using the principles of mathematics, physics, emical engineering.	5				
2		e, coordinate, implement, substantiate laboratory processes while carrying nts and to obtain and extract chemical compounds using standard methods	4				
3	•	e basics of mathematics, algorithmic principles and methods of computer e modeling, to design of chemical engineering systems, analyze and interpret cal methods.	4				
4	in engineering an chemical enginee	techniques, materials, skills and modern engineering tools which are used d to carry out industrial and chemical processes, control them and to apply ring principles at designing of these processes.	4				
5	solving these issu occur in industria	Ability to choose and use existing technologies, materials while undertaking project tasks and 3 solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.					
6		Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.					
7	Ability to use the foreign sources.	e language skills to exchange and obtain some knowledge gained from the	1				
8	• •	e the problem, to identify the basic requirements, to justify the idea and e the results and to compare them.	3				
9	Ability to underst characteristic for	tand professional, ethical, legal and security issues and the responsibilities engineering.	3				
10	Ability to work engineering skills standards, method	productively in multidisciplinary groups, especially in projects requiring s and to carry out all work in accordance with relevant laws, regulations, ds and guidelines.	2				
CL: C	Contribution Level	(1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)					
Cour	se Contents						
Weel	c Chapter	Topics	Exam				
	[1]	Familiarization with common laboratory equipment and safety rules.					
1	Chapter 1,						
	p.43-55						
	[1]	Accuracy and Precision of Laboratory Glassware					
2	Chapter 2,	The purpose of this experiment is to practice using various types of volume					
	p.91-103	measuring apparatus, focusing on their uses, accuracy and precision.					
	[1]	Accuracy and Precision of Laboratory Glassware					
3	Chapter 4,	pter 4,The purpose of this experiment is to practice using various types of volume19-161measuring apparatus, focusing on their uses, accuracy and precision.					

		Test of ions	
4	[1] Chapter 5, p.173-181	This experiment involves the qualitative analysis of solutions containing different ions. The presence of certain ions in an aqueous solution can be detected by making chemical tests. The common procedure for testing any unknown sample is to make its solution and test this solution with various reagents for the ions present in it. Testing with various reagents gives characteristic reaction of certain ions, which may be a colour change, a solid formation or any other visible changes. Several specific reactions will be carried out on solutions that will either separate the ions from each other or confirm the presence of one particular ion. The reactions that confirm the presence of a particular ion involve the creation of visible products such as precipitates or colored species. A reaction that results in a precipitation can also be used to separate ions from the solution.	
5	[1] Chapter 3, p.115-143	Test of ions This experiment involves the qualitative analysis of solutions containing different ions. The presence of certain ions in an aqueous solution can be detected by making chemical tests. The common procedure for testing any unknown sample is to make its solution and test this solution with various reagents for the ions present in it. Testing with various reagents gives characteristic reaction of certain ions, which may be a colour change, a solid formation or any other visible changes. Several specific reactions will be carried out on solutions that will either separate the ions from each other or confirm the presence of one particular ion. The reactions that confirm the presence of a particular ion involve the creation of visible products such as precipitates or colored species. A reaction that results in a precipitation can also be used to separate ions from the solution.	
	[1]	Obtaining of soap	
6	Chapter 11, p.377-385	Aim of this experiment prepare soap and compare properties of obtained soap to those of a commercial soap and a detergent.	
7	[1] Chapter 11, p.385-397	Obtaining of soap Aim of this experiment prepare soap and compare properties of obtained soap to those of a commercial soap and a detergent.	
8			Midterm
9	[1] Chapter 9, p.293-305	Extraction of benzoic acid Mixtures of compounds can be separated in many ways. Extraction is one of the most common and often used techniques in organic chemistry. It is a common way of separating a desired compound from a mixture. The separation is usually based on polarity differences of the target compound and other compounds in the mixture. Often, a chemical reaction is needed to alter the polarity of one of the components of the mixture. This type of separation is called a chemically active extraction.	
		Extraction of benzoic acid	
10	[1] Chapter 8, p.271-281	Mixtures of compounds can be separated in many ways. Extraction is one of the most common and often used techniques in organic chemistry. It is a common way of separating a desired compound from a mixture. The separation is usually based on polarity differences of the target compound and other compounds in the mixture. Often, a chemical reaction is needed to alter the polarity of one of the components of the mixture. This type of separation is called a chemically active extraction.	
11	[1] Chapter 8, p.271-281	Determining concentration of solution by titration Develop and implement a protocol to accurately verify the active ingredient (acetylsalicylic acid) content of an aspirin tablet, by titration. To plot a graph of pH as a function of the volume of titrant added and generate a titration curve.	

	1	1			<u> </u>
	[1]	Determini	ing concentra	tion of solution by titration	
12	Chapter 7,	Develop and implement a protocol to accurately verify the active ingredient			
	p.207-219			tent of an aspirin tablet, by titration. To plot a graph of olume of titrant added and generate a titration curve.	
		-		-	
		Preparing	solutions and	l defining their concentration.	
	[1]			lab, the student should be able to lculate molarities for solutions.	
13	Chapter 6,			ion of known concentration.	
	p.189-190	> 1	Prepare a dilute	e solution from a more concentrated one.	
			Perform serial Use a pipet and	dilutions. I a volumetric flask	
				l defining their concentration.	
	[1]	Upon com	pletion of this	lab, the student should be able to	
14	Chapter 6,	> I	Proficiently cal	lculate molarities for solutions.	
	p.190-199			ion of known concentration. e solution from a more concentrated one.	
	p.170 177		Perform serial		
				l a volumetric flask	
	[1]	Checking	g reports		
15	Chapter 2,				
	p.67-75				
16					Final
Recomm	nended Source	S			
ТЕХТВ	BOOK(S)				
1	J.A.Beran, Labo	oratory man	ual for pronci	iples of general chemistry. 10 th edition. Kindle. 201	.4
Assessn	nent				
Attenda	nce		0%	At least 75% class attendance is compulsory	
Presenta	ation		10%		
Laborate	ories		20%		
Midtern	n Exam		20%	Written Exam	
Final Ex	kam		50%	Written-Oral Exam	
Total			100%		
Assessn	nent Criteria		I	1	
Final gra	ades are determ	ined accord	ing to the Ac	ademic Regulations of Azerbaijan State Oil and Ind	ustry University
for Unde	ergraduate Stud	ies.			
Course	Policies				
•	Attendance of	the course i	s mandatory.		
•			•	inless an agreement is reached with the lecturer.	
-	_are assignine		accepted (

- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)	
Course duration in class	14	2	28	
Presentation	1	5	5	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	10	10	
Final Examination	1	3	3	
Preparation for final exam	1	15	15	
Tutorials	14	1	14	
Self-study	14	3	42	
Total Workload	1	1	120	
Total Workload/30(h)			120/30	
ECTS Credit of the Course			4	

Chemical engineering program, "Physics" department

Course Unit Title	Engineering Physics I
Course Unit Code	PHYS 1101
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	-
Laboratory (hour/week)	1
Year of Study	1
Semester when the course unit is delivered	1
Course Coordinator	Jeyhun Naziyev
Name of Lecturer (s)	Jeyhun Naziyev
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Laboratory.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	General physics

Physics is a basic subject for many engineering specialties at Technical Higher Education Institutions. Physics laws and research methods are widely used in the teaching of many subjects, including material science, electrotechnical, power and heat engineering, chemical engineering and others. The development of any field of modern energetics is inextricably linked with physics. For this reason, the students to be supposed to have the ability to apply physics in chemical engineering.

Objectives of the Course:

During orientation you can expect to:

Learn more about your academic program.

Learn about why Computer Engineering and how to be familiar with that since

Schedule your first set of classes

Meet faculty, advisors, and current State students

Interact with fellow incoming students

Learn how to Ask Questions!

Lear	ning Outcomes	
At th	e end of the course the student should be able to	Assessment
1	explain the measurement technique.	1,3
2	describe the concepts of distance, mass and time.	1,2,3
3	convert the units of distance and mass used in different systems of unit.	1,3
4	determine the amount of error in calculations.	1,2,3

5	perform calculations related with vectors.	1,2
6	identify the coordinate systems.	1,2,3
7	specify the location of a body (or a point particle) in a coordinate system.	1,2,3
8	determine the direction of a vector.	1,2
9	explain the motion in one and two dimensions.	1,2
10	express the velocity of a particle as a function of time.	1,2
11	express the direction and the magnitude of the velocity.	1,2
12	express the concept of acceleration.	1,2
13	explain the relative motion of reference frames.	1,3
14	analyze the causes of motion.	1,3
15	express the inertial and non-inertial reference frames.	1,2
16	analyze the source of acceleration.	1,2,3
17	examine action and reaction principle.	1,2,3
18	Explain circular motion.	1,2,3
19	explain the energy and transfer of energy.	1,3
20	explain the concept of work.	1,2,3
21	express that the work done is a transfer of energy.	1,2,3
22	describe the difference in the energies of a particle due to its position and motion.	1,2
23	explain the linear momentum and the collision.	1,2,3
24	Explain the linear momentum.	1,2,3
25	explain the concept of conservation of momentum.	1,2,3
26	analyze the collisions in one and two dimensions.	1,2,3
27	analyze the rotational motion of a rigid body about a specified axis.	1,2,3
28	explain the concepts of angular position, angular velocity and angular acceleration.	1,2
29	relate the angular acceleration with angular velocity.	1,2
30	analyze the effect that causes rotation of bodies.	1,3
31	examine the rotation of bodies having different geometrical shape and mass, about a fixed	1,2,3
	axis.	
21	analyze the rolling motion of a body.	1,2,3
33	explain the concept of equilibrium.	1,2,3
34	define the conditions for equilibrium.	1,2,3
35	explain the difference between the center of gravity and the center of mass.	1,2
36	explain the phases of matter.	1,2,3
37	define the pressure, Pascal's and Archimedes' Principles.	1,2,3
38	analyze fluids in motion and define the viscosity.	1,2,3
39	define the Equation of Continuity and Bernoulli's Equation.	1,2,3
Asse	ssment Methods: 1. Written Exam, 2. Presentation, 3. Lab. Work	

			CL
1	Ability to solv	ve complex issues and tasks by using the principles of mathematics, physics,	5
		chemical engineering.	5
2	•	cute, coordinate, implement, substantiate laboratory processes while carrying	
		nents and to obtain and extract chemical compounds using standard methods	5
-	and syntheses.		
3		the basics of mathematics, algorithmic principles and methods of computer	2
		the modeling, to design of chemical engineering systems, analyze and	2
	-	using statistical methods.	
4		the techniques, materials, skills and modern engineering tools which are used	4
		and to carry out industrial and chemical processes, control them and to apply	4
5	-	neering principles at designing of these processes.	
3	•	ose and use existing technologies, materials while undertaking project tasks and issues in chemical engineering and ability to eliminate malfunctions that may	4
		trial and chemical processes or in laboratory equipment.	4
6		gn systems, components, units and processes that meet the requirements, taking	
0		atural limitations such as economics, ecology, security and social aspects.	2
7		the language skills to exchange and obtain some knowledge gained from the	
1	foreign source		1
8	-	lyze the problem, to identify the basic requirements, to justify the idea and	
0	•	hate the results and to compare them.	5
9	-	erstand professional, ethical, legal and security issues and the responsibilities	
	•	for engineering.	2
10		rk productively in multidisciplinary groups, especially in projects requiring	
10		kills and to carry out all work in accordance with relevant laws, regulations,	3
ļ			5
i i	- standards, mei	noos and guidennes.	
CL: C		hods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
		vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
	Contribution Lev se Contents		Exam
Cour Wee	Contribution Lev se Contents k Chapter [1],	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics	Exam
Cour	Contribution Lev se Contents k Chapter [1], chap1,	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b)	Exam
Cour Wee	Contribution Lev se Contents k Chapter [1],	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures	Exam
Cour Wee	Contribution Lev se Contents k Chapter [1], chap1,	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some	Exam
Cour Wee	Contribution Lev se Contents k Chapter [1], chap1,	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e)	Exam
Cour Wee	Contribution Lev se Contents k Chapter [1], chap1,	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1],	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e)	Exam
Cour Wee	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3,	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1],	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method.	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads.	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical	Exam
Cour Wee 1	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight.	Exam
Cour Wee 1 2	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1],	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous	Exam
Cour Wee 1 2	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with	Exam
Cour Wee 1 2	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with constant acceleration e) Freely falling objects	Exam
Cour Wee 1 2	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2,	Vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work No1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with constant acceleration e) Freely falling objects Motion in two dimensions a) The position, velocity and acceleration vectors	Exam
Cour Wee 1 2	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2,	Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with constant acceleration e) Freely falling objects Motion in two dimensions a) The position, velocity and acceleration vectors b) Two-dimensional motion with constant acceleration c) Projectile motion	Exam
Cour Wee 1 2	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2, pgs22-43 [1], chap4,	Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work N1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with Motion in two dimensions a) The position, velocity and acceleration vectors b) Two-dimensional motion with constant acceleration c) Projectile motion d) Uniform circular motion e) Tangential and radial acceleration f) Relative	Exam
Cour Wee 1 2 3	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2, pgs22-43 [1],	Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work N1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with constant acceleration e) Freely falling objects Motion in two dimensions a) The position, velocity and acceleration vectors b) Two-dimensional motion with constant acceleration c) Projectile motion d) Uniform circular motion e) Tangential and radial acceleration f) Relative velocity and relative acceleration	Exam
Cour Wee 1 2 3	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2, pgs22-43 [1], chap4,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with Motion in two dimensions a) The position, velocity and acceleration vectors b) Two-dimensional motion with constant acceleration c) Projectile motion d) Uniform circular motion e) Tangential and radial acceleration f) Relative velocity and relative acceleration	Exam
Cour Wee 1 2 3	Contribution Lev rse Contents k Chapter [1], chap1, pgs3-11 [1], chap3, pgs59-75 [1], chap2, pgs22-43 [1], chap4,	Topics Topics Physics and Measurement: a) Standards of length, mass and time b) Dimensional analysis. c) Significant figures Vectors: a) Coordinate systems b) Vector and scalar quantities c) Some properties of vectors d) Components of a vector and unit vectors e) Multiplication of two vectors Laboratory Work №1. Determination of Young's modulus by bending method. Accessories: Device to determine the Young's modulus, calliper or micrometre, loads. In a device the rod with the load suspended in the centre of it is located on two vertical supports that are on a solid plate. One can calculate the numerical value of Young's modulus by measuring of rod bend for each weight. Motion in one dimension: a) Position, velocity and speed b) Instantaneous velocity and speed c) Acceleration d) Motion in one dimension with Motion in two dimensions a) The position, velocity and acceleration vectors b) Two-dimensional motion with constant acceleration c) Projectile motion d) Uniform circular motion e) Tangential and radial acceleration f) Relative velocity and relative acceleration Laboratory Work №2. Study of the impact mechanism <td>Exam</td>	Exam

T		the momentum and energy conservation laws. In an elastic collision of balls	
		the force of collision depends on the mass and speed and on the values	
		characterizing the elastic properties of balls.	
	[1],	Motion in three dimensions a) The position, velocity and acceleration	
5	chap6,	vectors b) Two-dimensional motion with constant acceleration c) Projectile	
_	pgs150-161	motion d) Uniform circular motion e) Tangential and radial acceleration f)	
		Relative velocity and relative acceleration	
		Work and Kinetic Energy: a) Work done by a constant force b) Work done	
		by a variable force c) Kinetic energy and theorem of work-kinetic energy	
		Laboratory Work №3. Determination of the free fall acceleration by	
		turned pendulum.	
	[1],	Accessories: Turned pendulum, stopwatch, ruler.	
6	chap7,	Determination of acceleration of gravity with the help of the so-called turned	
	pgs178-191	pendulum is based on the property of reciprocity. Revolving pendulum	
		consists of a metal rod longer than one meter, which has two parallel fixed	
		near its ends bearing prisms, on which it may alternatively be suspended.	
		Calculate the acceleration of free fall is going by measuring the oscillation	
		periods when hanging pendulum on any of the prisms.	
		Potential Energy and Conservation Of Energy a) Potential energy b)	
7	[1],	Conservative and neoconservative forces c) Conservative forces and	
7	chap8, pgs191-237	potential energy d) Conservation of mechanical energy e) Work done by	
	pg3191 257	neoconservative forces f) Power	
8			MidTerm
		Linear Momentum and Collisions: a) Linear momentum and conservation of	
		linear momentum b) Impulse and momentum c) Collisions d) Elastic and	
		inelastic collisions in one dimension e) Collisions in two dimensions f)	
		Center of mass g) Motion of a system of particles	
	513	Laboratory Work №4. Determination of the moment of inertia of the	
9	[1], chap9,	solids using a torsion pendulum.	
,	pgs247-277	Accessories: torsional pendulum, loads of varying weight and shape, a	
		stopwatch, an etalon cylinder, caliper.	
		The same experiments are carried and periods of torsional pendulum, etalon	
		body and study load are determined. With the help of these data the moment	
		of inertia can be calculated.	
	[1],	Rotation of a Rigid Object About a Fixed Axis: a) Angular position, velocity	
10	chap10,	and acceleration b) Rotational kinematics: rotational motion with constant	
	pgs293-300	angular acceleration c) Angular and linear quantities	
		Rotation of a Rigid Object About a Fixed Axis (Continues): d) Torque e)	
		Rigid Object Under a Net Torque f) Calculation of moments of inertia g)	
		Rotational Kinetic Energy $h)$ Energy Considerations in Rotational Motion. Work,	
		power and energy in rotational motion	
		Laboratory Work № 5. Determination of moment of inertia by the method	
	112	Laboratory Work № 5. Determination of moment of inertia by the method of falling.	
11	[1], chan10	Laboratory Work № 5. Determination of moment of inertia by the method	
11	chap10,	 Laboratory Work № 5. Determination of moment of inertia by the method of falling. Accessories:Installation for determining of the moment of inertia, metallic hoop, stopwatch, Vernier calliper, ruler, loads of different masses. 	
11		Laboratory Work № 5. Determination of moment of inertia by the method of falling.Accessories:Installation for determining of the moment of inertia, metallic	
11	chap10,	 Laboratory Work № 5. Determination of moment of inertia by the method of falling. Accessories:Installation for determining of the moment of inertia, metallic hoop, stopwatch, Vernier calliper, ruler, loads of different masses. 	
11	chap10,	 Laboratory Work № 5. Determination of moment of inertia by the method of falling. Accessories:Installation for determining of the moment of inertia, metallic hoop, stopwatch, Vernier calliper, ruler, loads of different masses. For rotation of disc the thin rope is wrapped around drum. This rope threw 	
11	chap10,	 Laboratory Work № 5. Determination of moment of inertia by the method of falling. Accessories:Installation for determining of the moment of inertia, metallic hoop, stopwatch, Vernier calliper, ruler, loads of different masses. For rotation of disc the thin rope is wrapped around drum. This rope threw down from pulley and load attached to another end of rope. Falling because 	
11	chap10,	 Laboratory Work № 5. Determination of moment of inertia by the method of falling. Accessories:Installation for determining of the moment of inertia, metallic hoop, stopwatch, Vernier calliper, ruler, loads of different masses. For rotation of disc the thin rope is wrapped around drum. This rope threw down from pulley and load attached to another end of rope. Falling because of gravity load pull the rope and rotate drum and disc around the axis. While 	

12	[1], chap11, pgs316-345	b) Angular m	nomentum of	lar Momentum: a) Rolling motion of a rigid object a particle c) Angular momentum of a rotating on of angular momentum	
13	[1], chap12, pgs363-373	-		e Conditions for equilibrium b) Center of gravity c) in static equilibrium	
14	[1], chap14, pgs417-427	Measurement e) Bernoulli's Laboratory of a liquid ac <i>Accessories:</i> scales and we If we take the coefficient of the same tub friction of the	s d) Buoyant Equation f) O work №6 . I cording to th Viscometer, eights. e same volur internal frict be will be di e liquid being	sure b) Variation of Pressure with Depth c) Pressure Forces and Archimedes's Principle d)Fluid Dynamics ther Applications of Fluid Dynamics Determination of the coefficient of internal friction a Poiseuille law. stopwatch, picnometer, distilled water, test liquid, mes of two different liquids, then depending on the tion, the time of the outflow of these liquids through ifferent. Calculation of the coefficient of internal g studied can be completed using densities of water utflow times and the coefficient of internal friction	
15	[1], chap14, pgs427-449	Continuity. h Laboratory method. Accessories: sulphate, stop The ball mov force) and the) Bernoulli's work № 7 Investigatec pwatch, accu es in a liquic e Archimede	 ies): g) Fluid Dynamics f) Equation of Equation. i) Viscosity Determination of viscosity of liquids by Stokes's d liquids, beaker, an aqueous solution of copper rate scales and weights. d gravity force, the force of internal friction (drag s' buoyant force are acting on it. Using equation of ity of liquid is calculated. 	
16			r		Final
TEXTBO 1. 1 2014,p.1 2. 2009, p.1 3. 1	R.A.Serway, 622 (main) Hugh D. Yc 596 (additio	J.W.Jewett.Ph pungand Roge nal) biancoli,Physic	r A. Physics	entists and Engineers with Modern Physics.9 th Edt, Ce s with Modern <i>Physics,14thEdt, Freedman,Unive</i> sts and Engineers with Modern Physics,4 th Edt, Pears	rsity, Pearson,
Assessm	ent				
Attendan			0%	At least 75% class attendance is compulsory	
Presentat	tion		10%		
Laborato	ry		20%		
Midterm exam 20%		20%	Written Exam		
Final Exam 50%		50%	Written-Oral Exam		
Total			100%		
Final gra	ent Criteria des are deter aduate Studie	mined accordi	ng to the Aze	erbaijan State Oil and Industry University Academic	Regulations for

Course Policies

• Attendance to the course is mandatory.

• Late assignments will not be accepted unless an agreement is reached with the lecturer.

- Students may use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industry University General Student Discipline Regulations

ECTS allocated based on Student Workload			
Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Tutorials	14	1	14
Self-study	14	4	56
Presentation	1	4	4
Preparation for midterm exam	1	5	5
Midterm Examination	1	3	3
Preparation for final exam	1	35	35
Final Examination	1	23	23
Total Workload	·		150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "General and applied mathematics" department

Course Unit Title	Calculus for engineers I
Course Unit Code	MATH 1101
Type of Course Unit	Compulsory
Level of Course Unit	1 st year of CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Year of Study	1
Semester when the course unit is delivered	1
Course Coordinator	Azimova G.M.
Name of Lecturer (s)	Azimova G.M.
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	None
Recommended Optional Programme Components	-

Course description:

In this course, the basic classical methods of mathematics, necessary for future engineers, are given. This course

includes the following chapters of "Calculus I":

1. Elements of linear algebra and analytical geometry. Matrices and operations on matrices. Determinants.Basic properties,rules for calculation. Equation of a straight line in plane and in space. Equation of a plane. Second –order curves. Ellipse, hyperbola, parabola.

2.Differential calculus of functions of one variable and its applications. Limit of a function. Continuity of a function. Derivative. Basic differentiation rules. Differentiation of Transcendental Functions. Basic theorems of differential calculus. Application of differential calculus to investigation of behavior of functions.

3. Complex Numbers. Operations on Complex Numbers. Geometric interpretation

4. Integration. Antiderivative and Indefinite Integral. Integration Methods. Integration of Rational Functions. Integration of Irrational Functions. Integration of Trigonometric Functions.

This course provides students possibility to achieve high level of mathematical knowledge. **Objectives of the Course:**

The teaching students of backgrounds of Calculus needed for future chemical engineers. Students must know the

basic principles of mathematics should be able to apply them. Studying mathematics requires the student to try

solving problems using the knowledge they have gained.

	ning Outcomes			
At the	e end of the course th	e student will be able to	Assessment	
1	Know and apply methods for finding limits and derivatives of single variable functions.			
2	Find the maximum	and minimum values of single variable functions.	1,2,3	
3	Know and apply int	tegration methods to find Indefinite integrals	1,2	
Asse	ssment Methods: 1. I	Final Exam, 2. Independent works 3. Midterm		
Cou	rse's Contribution t	o Program		
			CL	
1	Ability to solve co chemistry and chem	mplex issues and tasks by using the principles of mathematics, physics		
2	Ability to execute,	coordinate, implement, substantiate laboratory processes while carrying s and to obtain and extract chemical compounds using standard method		
3	•	basics of mathematics, algorithmic principles and methods of compute nodeling, to design of chemical engineering systems, analyze and interpre l methods.		
4				
5	solving these issues	nd use existing technologies, materials while undertaking project tasks and s in chemical engineering and ability to eliminate malfunctions that may and chemical processes or in laboratory equipment		
6		stems, components, units and processes that meet the requirements, taking l limitations such as economics, ecology, security and social aspects.	^g 4	
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources			
8		the problem, to identify the basic requirements, to justify the idea and he results and to compare them.	3	
9	Ability to understand characteristic for en	nd professional, ethical, legal and security issues and the responsibilitie agineering.	s 3	
10	engineering skills a standards, methods	-	-	
CL: C	Contribution Level (1	: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)		
Cour	se Contents			
Wee	ek Chapter	Topics	Exam	

	[4]	Matrices and operations on matrices. Determinants.Basic	
	Chapter 6,	properties, rules for calculation. Inverse Matrix	
1	pp 200-203,		
	Chapter 11,		
	pp329335		
		Equation of a straight line in plane and in space. Equation of a plane.	
	[4],	Second –order curves. Ellipse, hyperbola, parabola.	
2	Chapter 2,	Seminar1: Matrices and operations on matrices. Determinants. Inverse	
	pp 94-102	Matrix. Equation of a straight line in plane and in space. Equation of a	
		plane. Second –order curves. Ellipse, hyperbola, parabola	
	[4],	Complex Numbers. Operations on Complex Numbers. Conjugate	
3	Chapter 8,	Complex Numbers. Euler`s formula.Geometric interpretation.	
	pp 259-267		
		Limit of a function. Basic theorems on limits. Calculating limits	
		using the Limits Laws. Remarkable limits. One- sided Limits.	
	[1],	Infinite Limits.	
4	Chapter 2,	Seminar 2: Complex Numbers. Operations on Complex Numbers.	
	pp 83-113	Conjugate Complex Numbers. Euler`s formula.Geometric interpretation.	
	FF or one	Limit of a function Remarkable limits. One- sided Limits.	
		Infinite Limits.	
	[1],	Continuity of a function. Points of discontinuity of a function. Properties	
5	Chapter 2,	of continuous functions	
	pp115-125		
		Derivative. Geometrical meaning of the derivative. Differential Table	
	[1],	of derivatives. Basic differentiation rules. Higher derivatives.	
6	Chapter 2,	Seminar 3: Continuity of a function. Points of discontinuity of a	
	pp140-165	function. Derivative. Geometrical meaning of the derivative.	
		Differential Table of derivatives. Basic differentiation rules. Higher	
		derivatives	
7			Midterm
	[1],	Differentiation of Transcendental Functions. Differentiation of	
	Chapter 3,	Exponential Functions. Differentiation of Trigonometric Functions.	
8	pp172-182,	Differentiation of Logarithmic Functions.	
	190-197,	Seminar 4: Differentiation of Transcendental Functions. Differentiation	
	218-224	of Exponential Functions. Differentiation of Trigonometric Functions.	
		Differentiation of Logarithmic Functions.	

	[1],	Basic theorems of differential calculus. Theorems of Rolle, Lagrange, $0 \propto 10^{-10}$	
9	Chapter 4,	Cauchy.L`Hospital`s rule.Indeterminate forms of the type $\frac{0}{2}$,	
-	Pp287-293,	$0 \propto$. Taylor`s formula.	
	304-314	. rayior 5 formula.	
		Application of differential calculus to investigation of behavior of functions. Testing functions for monotonicity. Extrema of functions.	
	[1],	Seminar 5: Theorems of Rolle, Lagrange, Cauchy.L`Hospital`s	
10	Chapter 4,	$0 \propto$ rule.Indeterminate forms of the type – , — .Taylor`s formula	
	Pp276-287	0∞	
		Application of differential calculus to investigation of behavior of functions. Testing functions for monotonicity. Extrema of functions	
	[4],	Convexity and concavity of a curve. Point of inflection. Asymptotes of a	
11	Chapter 4,	curve.	
11	Pp 173-175		
	191/31/3	Antiderivative and Indefinite Integral. Properties of an antiderivative and	
		Indefinite Integral. Table of Basic Integrals. Integration Methods.	
	[1],	Integration by parts. Integration by change of variable.	
12	Chapter 7,	Seminar 6: Convexity and concavity of a curve. Point of inflection.	
12	Pp472-479	Asymptotes of a curve. Antiderivative and Indefinite Integral. Properties	
	1 p+72 +79	of an antiderivative and Indefinite Integral. Table of Basic Integrals.	
		Integration Methods.	
	[1],	Integration of Rational Functions (Rational Fractions). Integration of	
13	Chapter 7,	Irrational Functions	
10	Pp 493-503		
	- r	Integration of Trigonometric Functions. Universal trigonometric	
	[1],	substitution.	
14	Chapter 7,	Seminar 7: Integration of Rational Functions (Rational Fractions).	
	Pp 479-486	Integration of Irrational Functions. Integration of Trigonometric	
		Functions. Universal trigonometric substitution	
	[1],	Application of Integration. The Area Problem. The Distance Problem	
15	Chapter 5,		
	Pp 366-378		
16			Final
16			

Recommended Sources

TEXTBOOK(S)

1. James Stewart, Calculus. Early Transcendentals. McMaster University and University of Toronto. Printed in USA, 2014.

2. Thomas'. George B. Thomas. Calculus, Massachusetts Institute of Technology. 2004

3. Ron Larson. Bruce Edwards , Calculus. Cengage Learning, 2014

4. A.D.Myshkis. Introductory Mathematics for Engineers. Physica, Moscow. 2001

Assessment						
Attendance 0% At least 75%			class attendanc	e is compulsor	у	
Independent works 20%						
Quiz	10%					
Seminars	0%					
Midterm Exam	20%	Written Exam	m			
Final Exam	50%	Written-Oral	Exam			
Total	100%					
Assessment Criteria						
Final grades are determined accord	ling to the Ac	ademic Regulat	ions of ASOIU	Guidelines for	Undergraduate	
Studies						
Course Policies						
• Attendance of the course	is mandatory.					
• Late assignments will not	be accepted u	unless an agreen	ment is reached	with the lecture	er.	
• Students can use calculate						
• Cheating and plagiarism						
Oil and Industrial University General Student Discipline Regulations						
ECTS allocated based on Studen	t Workload					
A	Activities		Number	Duration	Total	
ACTIVITIE				(hour)	Workload(hour)	
Course duration in class			14	3	42	
Independent works			10	1	10	
Self-study			14	3,5	49	
Tutorials			14	1	14	
Midterm Examination			1	3	3	
Preparation for midterm exam			1	7	7	

Final Examination	1	3	3
Preparation for final exam	1	26	26
Total Workload			150
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Foreign languages-2" department

Course Unit Title	English II
Course Unit Code	ENGL 1201
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	0
Practice (hour/week)	3
Laboratory (hour/week)	0
Year of Study	1
Semester when the course unit is delivered	2
Course Coordinator	Sevil G. ALIYEVA
Name of Lecturer (s)	-
Name of Assistant (s)	-
Mode of Delivery	Seminar, Face to face teaching
Language of Instruction	English
Prerequisites	ENGL 1101 English I
Recommended Optional Program Components	Pre-intermediate English level grammar, reading,
	writing and listening skills.

Course description:

ENGL 1201 is designed for studying general English where students continue learning English grammar and vocabulary. This course provides students with pre-intermediate and intermediate level structure and vocabulary. The Structures class focuses on acquiring knowledge of English grammar and the practical ability to apply this knowledge in oral and written discourse. Grammar section is intended to give practical aid to students and help the students correct their gaps that become increasingly apparent as they put the language in writing form. The Communicative part is devoted to gaining practical competence in English by means of exercises in conversation, oral presentation, comprehension of texts, and writing skills. Students will be encouraged to read a variety of texts as well as chapters from textbooks so that they can pursue their undergraduate studies at the university without major difficulty. The multipurpose exercises reinforce and consolidate what has been heard, said, written and seen. Collaborating with a partner or working as a member of small group students will consider different topics while improving their vocabulary and four main skills of language: listening, speaking, reading and writing. The course is designed to improve the students' presentation ability. At the end of the course they are expected to do an oral presentation.

Objectives of the Course:

This course aims to bring the students to a level that will enable them fulfil the requirements of main courses of their departments.

English -2 is aimed to:

- develop students' language skills and capacity to conduct writing task through the vocabulary, listening and speaking skills;
- develop their level of knowledge, communicative capacity, and ability to analyse and reflect on the language;
- develop confidence and competence in using the language and expand the students' vocabulary and range of expressions;
- gain the language skills in English to communicate and to use for academical purposes;
- provide students with language knowledge and skills which are essential for general communication purposes and future academic studies, and also help students develop positive attitudes towards the target foreign language;
- gain insight into different language situations by achieving B1/B2 level in the Common European Framework of Reference

Lea	rning Outcomes			
	At the end of the course the student will be able to:	Assessment		
1	Communicate and share ideas and concepts using general language in discussions and talks;	1,3,4		
2	Use intermediate level of target language grammar and vocabulary in discussions and talks;	1,2,3,4		
3	gain intermediate level reading, writing, listening, speaking, and presentation skills;	1,2,3,4		
4	Write connected text on topics at intermediate level in the target language;	3,4		
5	Explain what they read in the target language;	3,4		
6	Narrate a story or relate the plot of a book or film;	4		
7	7 Have the basic academic skills in order to communicate both in daily life and in the 1, 3,4 academic environment;			
8	8 Make presentations in English, observe peers and provide peer feedback.			
	Assessment Methods: 1. Final Exam, 2. Midterm exam, 3. Presentation, 4. Seminars			
	Course's Contribution to Program			
		CL		
1	1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.			
² Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.		0		
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	2		
4				

_								
5	-	and use existing technologies, materials while undertaking project tasks and	4					
	solving these issues in chemical engineering and ability to eliminate malfunctions that may							
	occur in industrial and chemical processes or in laboratory equipment.							
6	Ability to design systems, components, units and processes that meet the requirements, taking 3 into account natural limitations such as economics, ecology, security and social aspects.							
7	Ability to use the foreign sources.	language skills to exchange and obtain some knowledge gained from the	5					
8	Ability to analyze	e the problem, to identify the basic requirements, to justify the idea and						
	critically evaluate	e the results and to compare them.	3					
9	Ability to underst	and professional, ethical, legal and security issues and the responsibilities	3					
	characteristic for	engineering.	-					
10	Ability to work p	roductively in multidisciplinary groups, especially in projects requiring						
	engineering skills	s and to carry out all work in accordance with relevant laws, regulations,	4					
	standards, method	ds and guidelines.						
	CL: Contribution	n Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)						
Cour	se Contents							
Wee	k Chapter	Topics	Exams					
		Reading: How much can you learn in a month? Grammar spot: Grammar:						
1	[1] Unit 5C;	have to, don't have to, must, mustn't. Lexical exercises. Speaking and						
	pp.56-57	Listening exercises.						
1	[1] Unit 5D;	Reading: The name of the game. Grammar spot: expressing movement.						
1	pp.58-59	Lexical exercises. Speaking and Listening exercises.						
2	[1] Unit 5	Practical English: at a department store.						
2	pp.60-63	Writing: a formal e-mail. Revise and check: What do you remember? What can you do?						
	[1] Unit 6A	Reading: If something bad can happen, it will. Grammar spot: if +present						
3	pp.64-65	simple. Lexical exercises. Speaking and Listening exercises.						
2	[1] Unit 6B	Reading: Never smile at a crocodile. Grammar spot: If+past; would +						
3	pp.66-67	infinitive Lexical exercises. Speaking and Listening exercises						
	[1] Unit 6C	Reading: Decisions, decisions. Grammar spot: may/might (possibility) Word building: noun formation. Lexical exercises. Speaking and Listening						
4	pp.68-69	exercises.						
	[1] Unit 6D	Reading: What should I do? Grammar spot: should/shouldn't. Verb –						
5	pp.70-71	"get". Lexical exercises. Speaking and Listening exercises.						
	[1] Unit 6	Practical English: at a pharmacy.						
5	pp.72-75	Writing: writing to a friend. Revise and check: What do you remember? What can you do?						
	[1] Unit 7A	Reading: Famous fears and phobias. Grammar spot: Present perfect+ for						
~		and since. Lexical exercises. Speaking and Listening exercises.						
6	pp.76-77	and shiel. Exteri excretises, speaking and Eistening excretises.						
6	pp.76-77 [1] Unit 7B	Reading: Born to direct. Grammar spot: . Lexical exercises. Speaking and Listening exercises.						

7	[1] Unit 7C	Reading: I used to be a rebel. Grammar spot: used to/didn't use to. Lexical	
1	pp.80-81 exercises. Speaking and Listening exercises.		
8			Midterm
0			exam
9	[1] Unit 7D	Reading: The mothers of invention. Grammar spot: Passive voice. Lexical	
9	pp.82-83	exercises. Speaking and Listening exercises.	
0	[1] Unit 7	Practical English: a boat trip.	
9	pp.84-87	Writing: describing a building. Revise and check: What do you remember? What can you do?	
	[1] 6Unit	Reading: I hate weekends. Grammar spot: something, anything, nothing.	
10	8A	Lexical exercises. Speaking and Listening exercises.	
	pp.88-89		
11	[1] Unit 8B	Reading: How old is your body. Grammar spot: quantifiers, too, not	
11	pp.90-91	enough. Lexical exercises. Speaking and Listening exercises.	
11 [1] Unit 8C pp.92-93		Reading: Waking up is hard to do. Grammar spot: word order of phrasal	
		words. Lexical exercises. Speaking and Listening exercises.	
12	[1] Unit 8D	Reading: I'm Jim" 'So am I. Grammar spot: so/neither+auxiliaries.	
12	pp.94-95	Lexical exercises. Speaking and Listening exercises.	
13	[1] Unit 8	Practical English: on the phone. Writing: giving your opinion.	
pp.96-99		Revise and check: What do you remember? What can you do?	
	[1] Unit 9A	Reading: Fact is always stranger than fiction.	
13	pp.100-101	Grammar spot: Past perfect tense. Adverbs: suddenly, immediately, etc. Lexical exercises. Speaking and Listening exercises.	
14	[1] Unit 9B	Reading: Then he kissed me. Grammar spot: Reported speech. Say, tell, or ask? Lexical exercises. Speaking and Listening exercises.	
	pp.102-103		
15	[1] Unit 9	Revise and check: Grammar. Vocabulary.	
	pp.104-107		
16			Final exam

Recommended Sources

Course book:

1. Clive Oxenden, Christina Latham-Koenig, Paul Seligson - New English File (Pre-intermediate Student's book and Work book), Oxford University Press.2010.

Supplementary Course Material:

- Oxford Practice Grammar-Intermediate, John Eastwood, Oxford, 2010
- Tom Hutchinson. English for Life, Oxford Press.2009
- Michael McCarthy, Felicity O'Dell. English Vocabulary in use, Second Edition, 2000
- Raymond Murphy. Essential Grammar in Use, Cambridge University Press.2000
- Stuart Redman, English Vocabulary in Use. Pre-intermediate Cambridge 2002

Assessment

Attendance	0%	Less than 75% class attendance results in NA grade
Presentation	20%	

Quiz	10%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload				
Activities	Number	Duration	Total	
reuvites	Tumber	(hour)	Workload(hour)	
Course duration in class	14	3	42	
Presentation	1	14	14	
Tutorials	14	1	14	
Self-study	14	3,5	49	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	7	7	
Final Examination	1	3	3	
Preparation for final exam	1	28	28	
Total Workload	150			
Total Workload/30(h)	150/30			
ECTS Credit of the Course	5			

Chemical engineering (CHEN) program, "Engineering and computer graphics"

	-
Course Unit Title	Introduction to Engineering Design
Course Unit Code	ENG1201
Type of Course Unit	Compulsory
Level of Course Unit	^{1nd} year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	1
Practice (hour/week)	2
Laboratory (hour/week)	-
Year of Study	1
Semester when the course unit is delivered	2
Course Coordinator	R.Kh.Malikov
Name of Lecture	R.Kh.Malikov
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program	-
Components	

department

Course description:

The major focus of the IED course is to expose students to design process, research and analysis, teamwork, communication methods, , engineering standards, and technical documentation.

Students will employ engineering and scientific concepts in the solution of engineering design problems. In addition, students use a state of the 3D solid modeling design software package to help them design solutions to solve proposed problems. Students will develop problem-solving skills and apply their knowledge of research and design to create solutions to various challenges that increase in difficulty throughout the course.

The students acquaint with the basic knowledge and skills in engineering drawings and the capability to read and interpret blue prints for manufacturing. The students can also develop an understanding of 2D and 3D computer aided drafting with the requirements of good engineering drawings and be able to apply them to their work.

Using computers at the beginning of the engineering education will help the students visualize engineering components. Appropriate sketching exercises will be done during practice hours by using a package program namely AutoCAD. The CAD software should be perceived by the student as a tool for producing engineering drawings.

Students improve their design skills in the areas of geometric shapes and solids, sizes, and the use of our 3D modeling software.

Students will use engineering and scientific concepts in solving engineering design problems. In addition,

students use the state of the software package to design three-dimensional solid modeling to help them

develop solutions to solve the proposed problems.

Lear	ning Outcomes				
At th	e end of the course the student will be able to	Assessment			
1	have knowledge of Technical Sketching and Drawing				
2	understand the main idea of using dimension for engineering drawing	1,2,3			
3	know the principles and tasks of design				
4	apply knowledge of 3D modeling in the process of designing				
5	skillfully use engineering and scientific concepts in solving engineering design problems	1,2,3			
Asse	ssment Methods: 1. Final Exam, 2. Independent works, 3. Midterm Exam				
Cou	rse's Contribution to Program				
		CL			
1	Ability to solve complex issues and tasks by using the principles of mathematic physics, chemistry and chemical engineering.	s, 1			
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.				
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.				
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.				
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment				
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.				
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources				
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.				
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.				
10	Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant				
	laws, regulations, standards, methods and guidelines.				

CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)

Course Contents						
Course	Contents					
Week			Topics	Exam		
	Design Process. Design	n process st	-	LAdin		
1	Design Process. Desig	gii process su	eps.			
3	Technical Sketching isometric view of simp		g. Sketch multiview drawings. Sketch an e solids			
5		linear distan	ces using a scale. Measure and record linear y linear dimensions to a multiview drawing.			
7	Modeling Skills Create Computer Aide Assemble the product	-	AD) models from dimensioned sketches. AD modeling software			
8				Midterm		
9	Geometry of Design. Geometric Shapes and Solids. Calculate the area of simple geometric shapes. Calculate the surface area and volume of simple geometric forms					
11	Dimensions and Toler	ances				
13	Design Team Identify group norms that allow a virtual design team to function efficiently. Brainstorm and sketch possible solutions to an existing design problem. Create a decision making matrix					
16				Final		
TEXTB 1. <u>D. M.</u> Publicat	ions, 2009		Engineering Graphics with Autocad, Delmar blisher: Delmar Publications, 2013			
	rk, David A. Madsen En ions, 1996	ngineering D	rawing and Design Publisher: Delmar			
Assessn	nent Criteria					
Final gra	ades are determined acco	ording to the	Academic Regulations of ASOIU for Undergrad	luate Studies		
Assessn	nent					
Attenda	nce	0%	At least 75% class attendance is compulsory			
Indepen	dent works	20%				
Quiz		10%				
Seminar	'S	0%				

Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

		Duration	Total Workload
Activities	Number	(hour)	(hour)
Course duration in class	14	3	42
Independent works	10	1,5	15
Tutorials	14	0,5	7
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7
Final Examination	1	3	3
Preparation for final exam	1	20	20
Self-study	14	4	56
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Computer Engineering" department

Course Unit Title	Computers and chemical engineering				
Course Unit Code	COMP 1201				
Type of Course Unit	Compulsory				
Level of Course Unit	1 nd year CHEN program				
National Credits	0				
Number of ECTS Credits Allocated	5				
Theoretical (hour/week)	2				
Practice (hour/week)	-				
Laboratory (hour/week)	1				
Year of Study	1				
Semester when the course unit is delivered	2				
Course Coordinator	Mustafayeva Sevinj				
Name of Lecturer (s)	Mustafayeva Sevinj				
Name of Assistant (s)	-				
Mode of Delivery	Face to Face, Laboratory				
Language of Instruction	English				
Prerequisites	-				
Recommended Optional Program Components	Basic computer programming skills				
Course description:					
A first introduction to the discipline of basics of modern information technology. A brief survey of the computer					
science discipline, focusing on the computer's role in representing, storing, manipulating, organizing and					
communicating information. For students considering further computer science offerings, this course provides an					
accurate picture of what lies ahead, hopefully increasing interest in the discipline.					

Objectives of the Course:

The overall goals of the course are to provide a solid introduction to systematic problem solving methods as well as effective technical writing skills. Students will receive instruction in the use of the software product MATLAB. Example problems and laboratory projects draw from the chemical engineering field whereby the student learns to apply appropriate software techniques and/or numerical methods.

Learning Outcomes					
At the end of the course the student will be able to Ass					
1	To enter high technology workforce, and make significant contributions to Computer Engineering through the research, design and development of a wide range of embedded	1,3			
	systems and system-on-chip applications.				
2	To help further the state's economic growth by developing innovative ideas, and translating them into commercial products that benefit society.	1,2,3,4			
	translating them into commercial products that beliefit society.				

		ffectively as a team member and/or leader in multidisciplinary and	2,3			
	multicultural e	environments.				
	To recognize that the transformed ethical responses to the transformed ethical response to the transformed ethical responses to the transformed ethical response to the transformed ethical responses to the transformed ethical response to the transformed ethical responses to the transformed ethical responses to the transformed ethical responses to the transformed ethical response to the tr	he societal and global context of their work and to understand professional	3			
5		-	1,3			
	Γo pursue lifel	ong learning through such activities as graduate school, distance education,	1,0			
1	professional tr	aining and membership in professional societies and to be able to adapt to				
	new engineerii					
		s: 1. Final Exam, 2. Presentation, 3. Lab. Work, 4. Midterm				
Cours	e's Contribut	tion to Program				
			CL			
1	Ability to solv	ve complex issues and tasks by using the principles of mathematics, physics,				
	chemistry and	chemical engineering	4			
(•	cute, coordinate, implement, substantiate laboratory processes while carrying ments and to obtain and extract chemical compounds using standard methods	2			
3	Ability to use t	the basics of mathematics, algorithmic principles and methods of computer				
6	engineering in	the modeling, to design of chemical engineering systems, analyze and	5			
i	nterpret data u	using statistical methods				
i	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes					
	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may					
0	occur in indust	trial and chemical processes or in laboratory equipment				
	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects					
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources					
	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them					
	•	erstand professional, ethical, legal and security issues and the responsibilities for engineering	2			
10	Ability to worl	k productively in multidisciplinary groups, especially in projects requiring				
	engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines					
		-				
		vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)				
Course	e Contents					
Week	Chapter	Topics	Exam			
1	1	Introduction and Computer in Chemical Engineering				
		Lab – Writing Equations in Microsoft Word				

		Familiarity with the interface of the word processor; acquaintance with the main teams; working with tables, working with formulas.	
2	2	Architecture of the Computers and Modeling in Chemical Engineering	
		Basic Concepts of Computer Hardware and Software. System and Application Software	
3	3	Lab. – Writing Equations in Microsoft Word Familiarity with the interface of the word processor; acquaintance with the main teams; working with tables, working with formulas.	
4	4	Number systems. Binary Math.	
		Introduction to Computer programming	
5	5	Lab. – Writing Equations in Microsoft Word Familiarity with the interface of the word processor; acquaintance with the main teams; working with tables, working with formulas.	
6	6	Software packages that used in Chemical Engineering calculation	
		Mathematical methods in Chemical Engineering	
7	6,7	Lab – Use of MATLAB quad and trap Functions integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation	
8			Midterm
		Algorithms and Flowcharts. Design and Analysis of Chemical Engineering	
9	8	Lab – Use of MATLAB quad and trap Functions integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation	
10	9	Programming in C/C++ and C/C++ data input/output	
		Control statements. Applications Dev C++	
11	10	Lab 3 – Linear, control programming in C++ Write a C++ programs to implement recursive and non recursive i) Linear search ii) Binary search	
12	11	Loop organization Dev C++	
		Array: One dimensional and two dimensional arrays	
13	12	Lab 4 –Looping programming in C++ The purpose of this lab is to gain practical experience with loops in C++. You will do this by examining a program that includes several loops, modifying it to incorporate further loop behavior, and modifying another program to handle input and output from files.	
14	12	Arrays processing in Dev C++	
1.7	10	Design programs with structures in Dev C++	
15	13	Lab 5 –Array processing in C++ To implement Stack ADT and Queue ADT using a singly linked list	
16			Final
ecomme EXTBC	ended Source OOK(S)	S	
1.	Peter Norton	n, Introduction to Computers, Career Education, 2008	
2.		einberg, Introduction to Computer Information System, Kendall Hunt Publishing, 2015	

3. A Modern Approach, K. N. King, W.W., C Programming, Norton&Company, 2nd Edition, 2008.

Assessment				
Attendance	0%	At least 75% class attendance is compulsory		
Presentation	10%			
Laboratories	20%			
Midterm Exam	20%	Written Exam		
Final Exam	50%	Written-Oral Exam		
Total	100%			

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Self-study	14	3,5	49
Preparation for presentation	1	8	8
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	21	21
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

department

Course Unit Title	General Chemistry II
Course Unit Code	CHEM 1201
Type of Course Unit	Compulsory
Level of Course Unit	1 st year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	0
Laboratory (hour/week)	1
Year of Study	1
Semester when the course unit is delivered	2
Course Coordinator	Minira M. Aghahuseynova
Name of Lecturer (s)	Minira M. Aghahuseynova
Name of Assistant (s)	Leyla Vezirova
Mode of Delivery	Face to Face, Laboratory.
Language of Instruction	English
Prerequisites	CHEM 1101 General Chemistry I
Recommended Optional Program Components	-

Course description:

Chemical Kinetics. Le Chatelier's principle on chemical equilibrium. Disperse systems. Classification of solutions. Solubility. Methods of expressing the concentration of solutions. Solutions of electrolytes. Strong and weak electrolytes, the degree and the dissociation constant hydrogen index. Reactions in solutions of electrolytes. Ionic exchange reactions. Hydrolysis of salts. The modern theory of acids and basis. Oxidation-reduction reactions and factors affecting their direction. Electrolysis of melts and solutions. Laws of electrolysis. General properties of metals. Obtaining metals from ores. Corrosion of metals and method of protection.

Objectives of the Course:

The aim of the subject is formation of real comprehension of the world- scientific view of contemporary theories based on interrelation of nature laws and phenomena, systematization and deepening of students' knowledge in the field of chemistry. The main goal of the subject in the process of training is to master theoretical and practical basis of chemistry for its application in solution of various ecological problems, analysis of water, seil, air and in chemical technology industry.

Learning Outcomes					
At th	At the end of the course the student will be able to Assessment				
1	Describe chemical kinetics. Define reaction rate.	1,			
2	Calculate halflife and concentration for the first and second order reactions.	1,2,4,3			

3	Express chemical ed	quilibrium. Define equilibrium constant.	1,3
4	Express importance	of Le Chatelier's principle on chemical equilibrium	1,3,4
5	List basics and acid	s Electrochemistry. Write redox reactions.	1,3
6	Ability write electrolysis solutions of salts.		1,3
Asses	•	Final Exam, 2. Presentation, 3. Lab. Work, 4. Midterm exam	
Cours	se's Contribution to) Program	
			CL
1		nplex issues and tasks by using the principles of mathematics, physics,	5
2	chemistry and chemical engineering.		4
2	-	coordinate, implement, substantiate laboratory processes while carrying	4
	and syntheses.	s and to obtain and extract chemical compounds using standard methods	
3		pasics of mathematics, algorithmic principles and methods of computer	4
	•	nodeling, to design of chemical engineering systems, analyze and interpret	
	data using statistica		
4	Ability to use the te	echniques, materials, skills and modern engineering tools which are used	4
	in engineering and	to carry out industrial and chemical processes, control them and to apply	
	chemical engineerir	ng principles at designing of these processes.	
5	•	d use existing technologies, materials while undertaking project tasks and	3
	-	s in chemical engineering and ability to eliminate malfunctions that may	
		and chemical processes or in laboratory equipment.	
6		stems, components, units and processes that meet the requirements, taking	4
		limitations such as economics, ecology, security and social aspects.	
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.		1
8	Ability to analyze	the problem, to identify the basic requirements, to justify the idea and	3
	critically evaluate th	he results and to compare them.	
9	Ability to understar	nd professional, ethical, legal and security issues and the responsibilities	3
	characteristic for en	gineering.	
10	Ability to work pro	oductively in multidisciplinary groups, especially in projects requiring	2
		and to carry out all work in accordance with relevant laws, regulations,	
	standards, methods	C	
CL: C	Contribution Level (1	: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cours	se Contents		
Weel	Chapter	Topics	Exam
	[1]: Chapter13,	Elements of IA group. Natural compounds, obtaining, properties and application.	
1	s:558-590		
		Elements of IIA group. Beryllum, magnesium and their properties, compounds	
2	[2]: Chapter15,	and application. Calsium and hardness of water.	
	s:458-482	I ale I abaratan Tashnisnas Safati	
	[1]: Chapter14,	Lab: Laboratory Techniques. Safety rules Elements of IIIA group. Bor and its properties. Aluminium, natural compounds,	
3	s:620-657	obtaining, properties and application.	
	s:020-037		
	[1]: Chapter11,	Elements of IVA group. Carbon, allotropy and compounds. Oxides, accids and salts of carbon. Obtaining properties and application. Silicium natural	
4	s:480-488	salts of carbon. Obtaining, properties and application. Silisium, natural compounds, properties and silicate industry.	
	5.100 400	r · · · · · · · · · · · · · · · · · · ·	

		Lab Determination of the handness of water	
		Lab. Determination of the hardness of water Learn to accurately dose cations H + , Ca+2, Mg+2 and anions	
		NO3 -, $SO4 2-$ in water to evaluate the quality of the water. ii)	
		Learn different analysis techniques: complexometric titration,	
		colorimetry.	
-	[1]: Chapter11,	Semicondactors- Ge, Sn, Pb. Natural compounds, obtaining, properties.	
5	s:490-510		
		Elements of VA group. Nitrogen, natural compounds, obtaining, properties. Hydrogen and oxygen compounds of nitrogen. Oxides and acids.	
	[1]: Chapter8,	 Lab: Synthesis of Alum i) To be aware of the need for recycling solid wastes, particularly scrap metal like aluminum. ii) To learn some of the chemistry of aluminum. 	
6	s:353-363	iii) To become familiar with the use of laboratory equipment such as beakers, flasks, Buchner funnel, and so on.	
		iv) To be able to perform the techniques of weighing, vacuum filtration and crystallization.	
		v) To be able to apply a knowledge of the stoichiometry of a sequence of chemical reactions to the calculation of	
7		the percent yield of alum synthesized from aluminum scrap.	Midterm
/			Wildterin
		Phosphorus, allotropy, properties, compounds and application.	
8	[1]: Chapter8,		
0	s:320-340	Lab. Synthesis of Aspirin - To synthesize aspirin and better understand carbonyl chemistry.	
		- To purify the crude aspirin with recrystallization method	
	[1]: Chapter15,	Elements of VIA group. Oxygen, obtaining, physical and chemical properties	
9	-	application. Water. Hydrogen peroxide	
	s:676-697		
	[1].	Sulphur. Natural compounds, obtaining, properties and application. Oxides and acids of sulphur.	
	[1]:		
10	Chapter17,	Lab. Determination of NO2 ions	
	s:772-791	i) Learn to evaluate the quality of water by determining concentration of NO3 -	
		anions	
		ii) Learn principles and application of the colorimetric analysis method.	
11	[1]: Chapter8,	Elements of VIIIA group. Hydrogen. Obtaining, properties and application.	
11	s:341-348	Hallogens and all properties, obtaining, properties and application.	
		d- elements.Elements of IB group. Copper, Silver and Gold. Obtaining,	
	[0] (1) · 10	properties and application.	
12	[2]: Chapter18,	Lab Determination of NO2 ions	
14	s:588-595	Lab. Determination of NO2 ions i) Learn to evaluate the quality of water by determining concentration of NO3 -	
		anions	
		ii) Learn principles and application of the colorimetric analysis method.	
	[1]: Chapter	d- elements.Elements of IIB group. Zinc, cadmium, mercury. Obtaining,	
13	-	properties and application.	
	29, s:970-1001	L-L-L ma allumation	
		d- elements of VIIIB group.Iron, cobalt, Nickel.Obtaining, properties amnd	
	[2]:	application.	
14	Chapter21,	Lab: Water Analysis: Solids	
	s:654-666	PURPOSE - To determine the total, dissolved, and suspended solids in a water	
		sample	
		• To determine the ions present in the solids of a water sample	

	[1]:	f- elemer	nts. Lantanoid	s and actinoids.			
15	Chapter17,						
	s:797-811						
16							Final
Recomm	mended Sources						
TEXTB	OOK(S)						
1.	Thomas R. Gilb	ert. Rein V	/. Kirss. Nata	alie Foster. Stac	ev Lowerv Bret	z. Chemistry.A	n Atoms-Focused
	Approach (Seco	nd Edition	n) <u>W.W.Nor</u> t	ton@Company	<u>7</u> , London, 2018	.p.1256 .	
2.	Catherine E.Hou 2005, p.1316.	usecroft, E	dwin C.Cons	stable, Chemisti	ry, Prentice Hall	, Upper Saddle	River, United States,
	-						
Assessn							
Attenda			0%	At least 75%	class attendance	e is compulsor	у
Presenta	ation		10%				
Laborate			20%				
Midtern	n Exam		20%	Written Exa	m		
Final Ex	kam		50%	Written-Ora	l Exam		
Total			100%				
Assessn	nent Criteria		L				
Final gra	ades are determin	ned accord	ing to the Ac	ademic Regula	tions of Azerbai	jan State Oil ar	nd Industry University
for Unde	ergraduate Studie	es					
Course	Policies						
•	Attendance of th	ne course i	s mandatory.				
•	Late assignment	ts will not	be accepted u	unless an agreei	nent is reached	with the lecture	r.
•	Students cannot	use calcul	ators during	the exam.			
•	Cheating and pla	agiarism w	ill not be tol	erated. Cheatin	g will be penaliz	zed according to	the Azerbaijan State
	Oil and Industri	al Univers	ity General S	Student Discipli	ne Regulations		
ECTS a	allocated based o	n Student	t Workload				
		A	-		N7 1	Duration	Total
		Activitie	S		Number	(hour)	Workload(hour)
Course	duration in clas	s			14	3	42
Presentation					1	4	4
Presenta	Tutorials						
	s				14	1	14
Tutorial	s n Examination				14	1 3	14
Tutorial Midterm		exam				_	
Tutorial Midtern Preparat	n Examination	exam			1	3	3
Tutorial Midtern Preparat Final Ex	n Examination tion for midterm				1	3	3 8
Tutorial Midtern Preparat Final Ex	n Examination tion for midterm o xamination tion for final exar				1 1 1	3 8 3	3 8 3

Total Workload/30(h)	150/30
ECTS Credit of the Course	5

Chemical engineering (CHEN) program, "General and applied mathematics" department

Course Unit Title	Calculus for engineers II
	Calculus for engineers in
Course Unit Code	MATH 1201
Type of Course Unit	Compulsory
Level of Course Unit	1 st year of CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Year of Study	1
Semester when the course unit is delivered	2
Course Coordinator	Azimova G.M.
Name of Lecturer (s)	Azimova G.M.
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	MATH 1101 Calculus for engineers I
Recommended Optional Programme Components	-

Course description:

In this course, the basic classical methods of mathematics, necessary for future engineers, are given. This course includes the following chapters of "Calculus II":

1. Definite Integral. Applications of Definite Integral.

- 2. Differential calculus of functions of several variable and its applications
- 3. Numerical Series. Alternating series. Functional Series. Taylor and Maclaurin Series.

This course provides students possibility to achieve high level of mathematical knowledge.

Objectives of the Course:

The teaching students of backgrounds of Calculus needed for future chemical engineers. Students must know the basic principles of mathematics should be able to apply them. Studying mathematics requires the student to try solving problems using the knowledge they have gained.

Learning Outcomes					
At th	At the end of the course the student will be able to Assessment				
1	Apply the limits, continuity, derivative and integral concepts related with the multi- variable functions	1,2,3			

ariable functions 1,2,3 ariable functions 1,2 s and the lateral areas of rotating 1,2 .Midterm exam
ariable functions 1,2 s and the lateral areas of rotating 1,2 .Midterm exam CL principles of mathematics, physics, 5 laboratory processes while carrying 2
ariable functions 1,2 s and the lateral areas of rotating 1,2 .Midterm exam CL principles of mathematics, physics, 5 laboratory processes while carrying 2
s and the lateral areas of rotating Midterm exam CL principles of mathematics, physics, 5 laboratory processes while carrying
CL e principles of mathematics, physics, 5 laboratory processes while carrying 0
CL e principles of mathematics, physics, 5 laboratory processes while carrying 0
CL e principles of mathematics, physics, 5 laboratory processes while carrying 0
CL e principles of mathematics, physics, 5 laboratory processes while carrying 0
principles of mathematics, physics, 5 laboratory processes while carrying 2
principles of mathematics, physics, 5 laboratory processes while carrying 2
laboratory processes while carrying
principles and methods of computer eering systems, analyze and interpret 5
ern engineering tools which are used processes, control them and to apply 5 ocesses.
s while undertaking project tasks and v to eliminate malfunctions that may 4 pry equipment
es that meet the requirements, taking 4 ogy, security and social aspects.
a some knowledge gained from the 1
equirements, to justify the idea and 3
curity issues and the responsibilities 3
aps, especially in projects requiring ance with relevant laws, regulations, 2
High, 5: Very High)
ppics Exam
as Limits of Sums. Riemann Sums. on of the Definite Integral. Integrable

		Basic Properties of a Definite Integral. The Newton-Leibniz Theorem.	
	[2], Chapter	Methods of evaluating definite integral.	
2	5, pp265-	Seminar 1: Sums and Sigma Notation. Areas as Limits of Sums.	
	280	Riemann Sums. Limits of Riemann Sums. The Newton-Leibniz	
		Theorem. Methods of evaluating definite integral.	
	[2], Chapter	Applications of Definite Integral. Arc Length .The Differential Formula	
3	6, pp326-	for Arc Length. Areas of Surfaces of Revolution. Defining Surface Area. Revolution about the y-axis.	
	337		
		Volumes Using Cross-Sections. Slicing by Parallel Planes . Solids of	
	[2],	Revolution: The Disk Method. Volumes Using Cylindrical Shells.The Shell Method	
4	Chapter 6,	Seminar 2: Applications of Definite Integral. Arc Length. Areas of	
	pp308-326	Surfaces of Revolution. Volumes Using Cross-Sections. Volumes Using	
		Cylindrical Shells	
	[2],	Improper Integrals. Improper integrals with infinite limits. Improper	
5	Chapter 8,	integrals of unbounded functions. Tests for Convergence and	
	pp 478-489	Divergence.	
		Functions of two variables. Domains and Ranges. Limit of a function of	
	[2],	two variables. Continuity of a function of two variables.	
6	Chapter 14,	Seminar 3: Improper integrals with infinite limits. Improper integrals	
	pp747-764	of unbounded functions Limit of a function of two variables. Continuity of a function of two variables	
		Continuity of a function of two variables	
7			Midterm
	[2],	Partial derivatives of a function of two variables .The Chain Rule. Implicit differentiation revisited. Differentials. Total differential.	
8			
0	Chapter 14, pp 764-780	Seminar 4 : Partial derivatives of a function of two variables .The Chain Rule. Implicit differentiation revisited. Differentials. Total	
	pp 704-780	differential.	
	[2], Chapter	Directional Derivatives and Credient Vectors, Properties of Directional	
9	14, pp784-	Directional Derivatives and Gradient Vectors. Properties of Directional	
	790	Derivatives. Algebra Rules for Gradients. Tangent Planes and Normal	
	[2], Chapter	lines. Derivatives and differentials of higher orders. Extrema of function of two	
	14, pp769-	variables. Derivative tests for Local Extreme Values	
10	771, 802-	Seminar 5: Directional Derivatives and Gradient Vectors. Derivatives	
	811	and differentials of higher orders. Extrema of function of two variables.	
	[2],	Numerical Series. Properties of Convergent Series. Necessary	
11	Chapter 10,	Condition for Convergence of a Series. Comparison Tests for	
	pp 532-567	Positive series. D'Alembert's Test. Cauchy' Root Test.	
	11	r solare series. D' memoert s rest. Cuterly Root rest.	

12	[2], Chapter 10, pp 568- 575	Alternating series. Absolute and conditional convergence. Leibniz' test. Seminar 6:Comparison Tests for Positive series. D'Alembert's Test. Cauchy' Root Test. Leibniz' test.	
13	[2], Chapter 10, pp 575- 584	Functional Series. Weierstrass' test. Power Series. Abel's theorem. The Radius of Convergence of a Power Series.	
14	[2], Chapter 10, pp584- 600	Taylor and Maclaurin Series. Applications of Taylor and Maclaurin Series. Taylor Polynomials. Seminar 7 : Functional Series. Weierstrass' test. Power Series. Abel's theorem. The Radius of Convergence of a Power Series. Taylor and Maclaurin Series	
15	[2], Chapter 11, pp610-631	Parametric Equations and Polar Coordinates. Parametrizations of Plane Curves. Calculus with Parametric Curves. Length of a Parametrically Curve.	
16	1.10		Final

Recommended Sources

TEXTBOOK(S)

- 1. George B. Thomas. Calculus, Massachusetts Institute of Technology.2004
- 2. Ron Larson., Calculus. Bruce Edwards ,2014
- 3 .A.F. Bermant , I.G.Aramanovich. Mathematical Analysis., Moscow. 2005

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Independent works	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	
Assessment Criteria	I	

Final grades are determined according to the Academic Regulations of ASOIU Guidelines for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration	Total
		(hour)	Workload(hour)
Course duration in class	14	3	42
Independent works	10	1	10
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	8	8
Final Examination	1	3	3
Preparation for final exam	1	23	23
Total Workload	Ι	1	150
Total Workload/30(h)	150/30		
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Physics" department

Coi	ırse Unit Title	Engineering Physics II			
	irse Unit Code	PHYS 1201			
	be of Course Unit	Compulsory			
• •	el of Course Unit	1 st year CHEN program			
Nat	ional Credits	0			
Nu	nber of ECTS Credits Allocated	5			
The	eoretical (hour/week)	2			
Pra	ctice (hour/week)	-			
Lat	ooratory (hour/week)	1			
	r of Study	1			
	nester when the course unit is delivered	2			
	urse Coordinator	Jeyhun Naziyev			
	ne of Lecturer (s)	Jeyhun Naziyev			
	ne of Assistant (s)	-			
	de of Delivery	Face to Face, Laboratory.			
	nguage of Instruction	English			
	requisites	PHYS 1101 Engineering Physics I			
	commended Optional Program Components rse description:	General physics			
electr mode	Physics is a basic subject for many engineering ics laws and research methods are widely used in the rotechnical, power and heat engineering, chemical ern energetics is inextricably linked with physics. For ply physics in chemical engineering.	he teaching of many subjects, including engineering and others. The developm	ng material science, nent of any field of		
Obje Duri	ctives of the Course: <i>ng orientation you can expect to:</i> n more about your academic program.				
	about why Computer Engineering and how to be fa	miliar with that since			
	dule your first set of classes				
	faculty, advisors, and current State students				
	act with fellow incoming students				
	how to Ask Questions!				
	ning Outcomes				
	e end of the course the student should be able to		Assessment		
1	Explain the Simple Harmonic Motion.		1,2,3		
2	Define the Harmonic Oscillator.		1,2,3		
	Analyse the Pendulums.		1,2,3		
4	Identify the Characteristics of wave motion.		1,2,3		
5	Analyse the Transverse and Longitudinal Waves.		1,2,3		
6	Define the Temperature.		1,2,3		
7	Explain the Thermal Equilibrium and the Laws of T	Thermodynamics			
8	Determine the Thermal Expansion.	normouynamics.	1,2,3		
	_		1,2		
9	Describe The Gas Laws.	1,2			
10	Define the Electric Charges.	1,2			
11	Determine the Coulomb's Law.	1,2			
12	Express the Properties of electric charges.		1,2,3		
13	Describe the Electric Field and the Motion in Electric	ric Field.	1,3		
14	Define the Electric Potential and Potential difference	ce.	1,2,3		
15	Analyse the Potential difference in a uniform electr		1,2		
	Analyse the Capacitors and Dielectrics.				
16					
16 17	Analyse the Capacitors and Dielectrics.1,3Definition the capacitance.1,3				

1[1], chap15 pgs450-471Oscillatory Motion: a) Simple Harmonic Motion. b) Harmonic Oscillator. c) Pendulums.					
Week	Chapter	Topics	Exam		
Course	Contents				
CL: Con	tribution Level ((1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	I		
	engineering skills and to carry out all work in accordance with relevant laws, regulations, 3 standards, methods and guidelines.				
10 A	bility to work p	productively in multidisciplinary groups, especially in projects requirin			
	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.				
cı	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 5				
fc	foreign sources.				
7 A	bility to use the	language skills to exchange and obtain some knowledge gained from th	ie 1		
		ystems, components, units and processes that meet the requirements, takin al limitations such as economics, ecology, security and social aspects.	² 2		
00	ccur in industrial	es in chemical engineering and ability to eliminate malfunctions that ma and chemical processes or in laboratory equipment.	-		
5 A	bility to choose a	and use existing technologies, materials while undertaking project tasks an			
in	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.				
er in	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.2				
oi ai	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 5				
cł	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.				
1 .	1 11		CL		
	's Contribution				
	-	Written Exam, 2. Presentation, 3. Lab. Work	_,_		
		nal radiation laws.	1,3		
	efine the Therma		1,3		
		is's and Brewster's Laws.	1,3		
	escribe the Polar		1,3		
	escribe the Diffr		1,3		
		hofer Diffraction.	1,2		
	nalyse the Fresh		1,2		
	escribe the Diffr		2,3		
	nalyse the Interf	-	2,3 2,3		
		cations of interference phenomenon.	2,3		
-		erence of light waves.	2,3		
	xpress the Energ	y in magnetic field.	1,2		
	escribe the Self-		1,3		
	Define the Inductance.				
	Describe the Motion of a charged particle in a magnetic field.				
	Analyse the Magnetic force on a current- carrying conductor.				
0 D	Define the properties of the magnetic field.				
9 D	Describe the Magnetic Fields.				
	Explain the Energy stored in a charged capacitor Describe the Magnetic Fields				

			[
		Laboratory work № 1. Determination of unknown frequency by addition	
		mutually perpendicular oscillations.	
		Accessories: The oscilloscope and two generators.	
		Installation consists of a generator of known frequencies, oscilloscope and	
		generator of unknown frequencies. Signals from generators come to	
		oscilloscope, and Lissajous' figures are appeared on a screen. We can	
		calculate the unknown frequency using a known frequency.	
	[1], chap16-17	Wave Motion: a) Characteristics of wave motion. b) Transverse and	
2	pgs483-517	Longitudinal Waves. c) Wave Equation. d) Characteristics, Intensity and	
	10	Sources of Sound.	
		The Kinetic Theory of Gases: a) Temperature. b) Thermal Equilibrium	
		and Zeroth Law of Thermodynamics. c) Thermal Expansion. d) The Gas	
		Laws. e) Distribution of Molecular Speeds. f) Real Gases and changes of	
		Phase. Van der Waals Equation of State. g) Mean Free Path. Diffusion.	
	[1], chap19, 21 pgs567-580,	Laboratory work № 2. Determination of the average free path length and	
	626-631, 639-	the effective diameter of air molecules.	
3	645	Accessories: capillary and a glass jar with a tap, a stopwatch, beaker, ruler.	
	[2], chap13-6,	First measured the volume of water leaked from container and the flow	
	pgs369-376	time. The same volume of air will come into container. Knowing the value	
		of atmospheric pressure and temperature we calculate numerical values of	
		the average free path length and the effective diameter of air molecules	
		respectively.	
		The First Law of Thermodynamics: a) Heat. b) Internal energy. c)	
4	[1], chap20,	Specific heat. Latent Heat. d) The First Law of Thermodynamics.	
4	21 pgs590-615, 631-639	e) Adiabatic Expansion of Gases. f) Heat Transfer.	
	031-039		
		The second law of Thermodynamics: a) The second law of	
		Thermodynamics b) Heat Engines. c) Reversible and Irreversible	
		Processes. d) The Carnot Engine. e) Entropy.	
		Laboratory work № 3. Determination of the ratio of heat capacities of	
		gases by Clement – Desorme's method.	
		Accessories: Glass bottle with capacity of 5 - 6 cubic meters, manometer,	
F	[1], chap22,	air pump.	
5	pgs653-678	A gas can be pumped into the glass balloon with a capacity of 15 - 20 liters	
		by the pump. The difference between pressure in balloon and atmospheric	
		pressure is fixed by manometer coupled with the balloon. Gas first is	
		compressed then adiabatically expands. Substituting numerical values	
		hight level differences in manometer the value of the ratio of heat	
		capacities can be calculated.	
		··· r	
	[3], chap15-	Thermodynamic Temperature. The Third Law of Thermodynamics.	
6	11, pgs424,434-	Thermal Pollution, Global Warming, and Energy Resources.	
	436		
		Electric Charges and Coulomb's Law: a) Properties of electric charges b)	
		Insulators and conductors c) Coulomb's Law	
		Laboratory work № 4. Determination of electric capacity of the	
7	[1], chap23,	capacitor by ac bridge.	
7	pgs690-695	Accessories: Capacitors with known and unknown capacities, slide wire,	
		telephone, an oscilloscope, an alternator, a sound generator.	
		The principle of this method lies in the fact that the unknown capacitance is included in one of the arms of the bridge, then by selection of known	
		is included in one of the arms of the bridge, then by selection of known	
-		capacitances and resistances balance of the bridge is achieved.	M' IT
8			MidTerm
		Electric Field and the Motion in Electric Field: a) Electric field b)	
9	[1], chap23, pgs704-713	Electric field lines c) Electric field of a continuous charge distribution d)	
	P53704-713	Motion of charged particles in a uniform electric field.	
			•

	1		ı
		Laboratory work № 5. Determination of the horizontal component of the	
		earth's magnetic intensity. Accessories: Tangent - galvanometer, constant current source, ammeter,	
		rheostat.	
		Along with the magnetic field of the Earth, a magnetic field is created by	
		created by a circular current in the centre of the turns of tangent-	
		galvanometer acts to the needle of compass and it rotates. Knowing the	
		angle of needles turn we and the current in turns of coil we calculate the	
		horizontal component of the earth's magnetic intensity.	
10	[1] , chap25, pgs746-764	Electric Potential: a) Potential difference and electric potential b) Potential difference in a uniform electric field c) Electric potential and potential energy due to point charge d) Electric potential due to continuous charge distributions e) Obtaining electric field from the electric potential	
		Capacitors and Dielectrics: a) Definition of capacitance b) Calculation of	
		capacitors and Dielectrics: a) Definition of capacitance b) Calculation of capacitance c) Combinations of capacitors d) Capacitors with dielectrics e) Energy stored in a charged capacitor Laboratory work \mathbb{N} 6. Determination of the coefficient of self – induction by Joubert method.	
11	[1], chap26, pgs777-793	Accessories: The study coil, iron core, voltmeter and ammeter AC, power supply.	
		The volt-ampere characteristics of solenoid with core inside and without	
		is determined. Then the impedance and inductance of the solenoid for the	
		two cases is found. At last using these data the coefficient of self –	
		induction of coil is computed.	
	[1] chom 20	Magnetic Fields: a) Definition and properties of the magnetic field	
12	[1], chap29, pgs868-884	b) Magnetic force on a current- carrying conductor c) Motion of a	
		charged particle in a magnetic field	
	[1] -1- 20		
13	[1], chap32, pgs970-979	Inductance: a) Self-inductance b) Energy in magnetic field c) Mutual	
	FO	inductance.	
	[1], chap37,	Wave Optics: a) Interference of light waves. b) The applications of	
14	pgs1134-1149, Chap38,	interference phenomenon, Interferometers. c) Diffraction of light.	
	pgs1160-1168	Fresnel theory.	
	pgs1100-1108	Wave Optics (Continues): Fraunhofer Diffraction. Diffraction grating. Polarization of light. Malus's and Brewster's Laws. Thermal radiation.	
		Thermal radiation laws.	
		Laboratory work № 7. Studying of the Malus's law and determination	
	[1] abam 20	of the degree of polarization of the laser radiation.	
	[1], chap38, pgs1161-	Accessories: Laser, polarizer, micro-ammeter and photocell.	
1.5	1165,1169-	A polarized light beam from the laser is incident on the polarizer mounted	
15	1173, 1175- 1180,	on the rim. The polarizer can rotate together with the angle indicator relative to the fixed disk. The disk has a scale, allowing to determine the	
	Chap40,	angle of rotation. Passing through the polarizer, the light hits the surface	
	pgs1234-1238	of the photodiode. Under the action of light, a photo-emf is produced in	
		the photodiode. The photocurrent is proportional to the intensity of the	
		incident light. Rotating the polarizer to the different angles φ and note the	
		corresponding values of the current the degree of polarization of the laser	
		radiation is calculated.	
16			Final
Recomm	ended Sources	1	
TEXTBO			
		tt.Physics for Scientists and Engineers with Modern Physics.9thEdt, Cen	gage Learning,
2014,p.1	622 (main)		

2. Hugh D. *Young* and Roger A. Physics with Modern *Physics*, 14thEdt, *Freedman*, University, Pearson, p.1596 (additional)

3. Douglas C.Giancoli, Physics for Scientists and Engineers with Modern Physics, 4thEdt, Pearson, 2009, p. 1322 (additional)

Assessment			
Attendance	0%	At least 75% class attendance is compulsory	
Presentation	10%		
Laboratory	20%		
Midterm exam	20%	Written Exam	
Final Exam	50%	Written-Oral Exam	
Total	100%		

Assessment Criteria

Final grades are determined according to the Azerbaijan State Oil and Industry University Academic Regulations for Undergraduate Studies

Course Policies

- Attendance to the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students may use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industry University General Student Discipline Regulations

Activities	Number	Duration (hour)	Total Workload (hour)
Course duration in class	14	3	42
Tutorials	14	1	14
Self-study	14	3,5	49
Preparation for presentation	1	10	10
Preparation for midterm exam	1	9	9
Midterm Examination	1	3	3
Preparation for final exam	1	25	25
Final Examination	1	3	3
Total Workload			150
Total Workload/30(h)	150/30		
ECTS Credit of the Course			5

Chemical engineering (CHEN), "Technology of organic substances and high molecular

Course Unit Title	Chemical Engineering Material and Energy Balances
Course Unit Code	CHEM 2101
Type of Course Unit	Compulsory
Level of Course Unit	2 nd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	2
Semester when the course unit is delivered	3
CourseCoordinator	Narmina Guliyeva
NameofLecturer (s)	Narmina Guliyeva
NameofAssistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	CHEM 1201 General Chemistry II
Recommended Optional Programme Components	-

compounds" department

Course description:

How can you estimate the release of pollutants from a coal-fired power plant and how changes to processes within the plant might influence the amount released to the environment? If a bench-scale drug compound is showing promising results, how do you start to think about producing enough to treat millions of people? Chemical engineers are challenged with similar questions across a wide variety of fields and applications including petroleum refining, pharmaceuticals, polymers, consumer products, water purification, food science, and commodity and specialty chemicals. In designing the processes to support these various needs, chemical engineers need to consider the operations involved, the amounts of raw materials that are required, separations of more and less valuable materials, and energy requirements. In this course you will be introduced to how to start to evaluate and estimate the necessary components of a chemical process as chemical engineers. The decisions related to chemical processes can have profound economic, environmental, and even political consequences.

Objectives of the Course:

-Recognize the value of chemical technology through being introduced to the field of

chemicalengineering.

-Create representative process flow diagrams and use them to organize systems of equations.

-Formulatematerialbalancestosolve for compositions and flow rates of process streams.

-Incorporate single and multiple reactions into unit operations within chemicalprocesses.

-Identify and calculate physical and chemical properties for compounds and approachesto estimate these values for chemicalprocesses.

-Deriveenergybalancesforchemicalprocesses and integrate with material balance calculations to solve for energy inputs and/or outputs.

-Collaborate effectively on a team project integrating multiple chemicalprocesses.

n u	he end of the course the student will be able to	Assessment
1	To be able to have knowledge about unit systems (Metric, S.I., British Unit Systems) to be used in chemical engineering	1,3
2	To be able to solve chemical processes by using process parameters such as mass, volume, chemical content, pressure and temperature to be used in chemical engineering.	1,2,3
3	To be able to establish mass balances for different components which do not have a chemical reaction.	2,3
4	To be able to establish mass equivalents for the chemical reactions for different components forming a process.	3
5	Know plant site/place selection, ethics and professionalism	1,3
Ass	essment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam	
	rse's Contribution to Program	
	rse's Contribution to Program	CL
	rse's Contribution to Program Ability to solve complex issues and tasks by using the principles of mathematics, physics chemistry and chemical engineering.	
Cou	Ability to solve complex issues and tasks by using the principles of mathematics, physics	s, 5 g
C ou 1	Ability to solve complex issues and tasks by using the principles of mathematics, physics chemistry and chemical engineering. Ability to execute, coordinate, implement, substantiate laboratory processes while carryin, out the experiments and to obtain and extract chemical compounds using standard method	s, 5 g 3 r

5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.				
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.				
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1				
8		ze the problem, to identify the basic requirements, to justify the idea and te the results and to compare them.	4		
9	Ability to unders	stand professional, ethical, legal and security issues and the responsibilities r engineering.	3		
10	engineering skill	productively in multidisciplinary groups, especially in projects requiring ls and to carry out all work in accordance with relevant laws, regulations, ods and guidelines.	3		
CL: C	Contribution Level	l (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)			
Cours	se Contents				
Weel	k Chapter	Topics	Exam		
	[1]	Dimensions, units and conversion factors, conversion of units			
1	Part 1				
	Chapter 2				
	[1]	Dimensions, units and conversion factors, conversion of units			
2	Part 1 Chapter 2	Sem: Dimensions, units and conversion factors, conversion of units			
3	[1] Material balances Liquid and solid densities. Gas laws, ideal gases, real Part 2 gases Chapter 5				
4	[1] Part 2 Chapter 4	Material balances. Process classification.Problem solving techniques, introduction to mass balance Sem: Material balances			
5	[1] Part 2 Chapter 5	Material balances . multiphase systems. Mass balance in the absence of chemical reaction			

	Chapter 5	Sem: Material balances . multiphase systems. Mass balance in mixing			
		and drying processes.			
7			Midterm		
	[1]	Mass Equilibrium in Distillation and Absorption Processes			
8	Part 3	Some Mass Equilibrium in Distillation and Absorption Depasson			
	Chapter 7	Sem: Mass Equilibrium in Distillation and Absorption Processes			
	[1]	Mass balance in extraction and crystallization processes			
9	Part 3				
	Chapter 7				
	[1]	Back-loop and side-pass in systems without chemical reaction			
10	Part	Sem: Mass balance in extraction and crystallization processes. Back-			
	Chapter	loop and side-pass in systems without chemical reaction			
	[1]	Mass equilibrium in chemical reaction			
11	Part				
	Chapter				
	[1]	Mass equilibrium in chemical reaction			
12	Part 3	Some Mass aquilibrium in chamical reaction			
	Chapter 7	Sem: Mass equilibrium in chemical reaction			
	[1]	Back-loop and side-pass in systems with chemical reaction			
12	Part 3				
13	Chapter 8-				
	9				
		Mass equilibrium in a system with chemical reaction and non-chemical			
	[1]	reactions			
14	Part 3	Sem: Mass equilibrium in a system with chemical reaction and non-			
	Chapter 8	chemical reactions			
	[1]	Mass balance in systems with and without chemical reaction			
15	Part 4				
	Chapter 12				
16	1		Final		

TEXTBOOK(S)

- Felder, Richard M. and Rousseau, Ronald W.; "Elementary Principles of Chemical Processes", Third Edition; John Wiley & Sons, Inc.;2005
- 2. Yaws, Carl L.; "Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds";

Knovel; 2003;				
Assessment				
Attendance	0%	At least 75% class attendance is compulsory		
Presentation	20%			
Quiz	10%			
Seminar	0%			
Midterm Exam	20%	Written Exam		
Final Exam	50%	Written-Oral Exam		
Total	100%			

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry University for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration	Total Work load
Acuvities	Number	(hour)	(hour)
Course duration in class	14	3	42
Presentation	1	5	5
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midtermexam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	20	20
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

department

Course Unit Title	Organic chemistry
Course onit The	Organic chemistry
Course Unit Code	CHEM 2102
Type of Course Unit	Compulsory
Level of Course Unit	2 nd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	2
Practice (hour/week)	-
Laboratory (hour/week)	1
Year of Study	2
Semester when the course unit is delivered	3
Course Coordinator	Leyla Z.Vezirova
Name of Lecturer (s)	Leyla Z.Vezirova
Name of Assistant (s)	Tahmina Taghiyeva
Mode of Delivery	Face to Face, Laboratory.
Language of Instruction	English
Prerequisites	CHEM 1201 General Chemistry II
Recommended Optional Program Components	-

Course description:

Historical development of organic chemistry. Classification of organic compounds. Electronic structure of a molecule. Spatial structure of organic compounds. Nomenclature of main classes of organic compounds. Isomerism, obtaining methods, physical and chemical properties of organic compounds. Probable industrial obtaining methods and application fields of organic compounds and their capability to enter into various chemical conversions.

Objectives of the Course:

Students should know more about organic substances, their electronic and molecular structure, isomerism, physical and chemical properties. Students should be able to use all accumulated knowledge for an understanding of chemical processes in the field of petroleum refining, polymers obtaining and organic synthesis.

Learning Outcomes At the end of the course the student will be able to Assessment 1 interpret the concept of aromaticity and the main properties of aromatic compounds. associate polarization of a bond with electronegativity. understand nucleophile and electrophile groups and their properties. associate different bond types of carbon and its hybrid orbitals. Express the differences between valence bond and molecular orbital approaches. derive mechanism of a reaction. 1,3

2	interment the monthly and monomics of help and conversion de	1 2 2 4
Z	interpret the reactions and properties of halogen compounds. evaluate effects of atomic properties on acidity and basicity.	1,2,3,4
	relate structure of molecule with strength of acidity and basicity.	
	enlighten relationship between acidity constant pKa and an acid-base reaction.	
	Illustrates reactions of ketones,	
	Illustrates preparation methods of aldehydes	
3	interpret the reactions and properties of alcohols and phenols.	2,3
	interpret reactivity of alkane, alkene and alkyne.	
	design reactions of aliphatic hydrocarbons. prepare alkane, alkene and alkynes using different methods.	
	Recognize the main differences between the acidities of alcohols and phenols.	
	Applies conversion of carboxylic acids to their derivatives on example reactions,	
	Illustrates reactions of carboxylic acid derivatives,	
	Illustrates preparation methods of carboxylic acid derivatives.	
4	interpret the reactions and properties of ethers and epoxides.	1,3
	explain aromaticity concept.	
	Recognize the main differences between open chain ethers and epoxides.	
	interpret inductive and resonance effects on aromatic compounds. write side chain reactions of aromatic compounds.	
	while side chain reactions of aromatic compounds.	
5	interpret the reactions and properties of amines.	1,3,4
	nomenclature alcohol and phenols.	
	write reaction mechanisms of alcohols.	
	write reaction mechanisms of phenols.	
	prepare alcohols.	
	nomenclature ethers and epoxides. write reasonable reactions for ethers.	
	write reasonable reactions for epoxides.	
	write reasonable reactions for epoxides.	
	distinguish aliphatic and aromatic halogenated organic compounds.	
	write preparation methods for the halogenated organic compounds.	
	design reactions of halogenated organic compounds.	
	write different preparation methods for amines.	
	interpret reactivity of aldehydes and ketones.	
Δςςρ	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exam, 4. Laboratory	
	rse's Contribution to Program	
Cou	rse's Contribution to Program	~~~
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics,	5
	chemistry and chemical engineering.	5
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying	
	out the experiments and to obtain and extract chemical compounds using standard methods	5
	and syntheses.	-
2	-	
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer	
		4
	engineering in the modeling, to design of chemical engineering systems, analyze and	4

4	-	niques, materials, skills and modern engineering tools which are used			
	in engineering and to c	arry out industrial and chemical processes, control them and to apply	5		
	chemical engineering p	principles at designing of these processes.			
5	5 Ability to choose and use existing technologies, materials while undertaking project tasks and				
	solving these issues in	chemical engineering and ability to eliminate malfunctions that may	4		
	occur in industrial and chemical processes or in laboratory equipment.				
6	Ability to design system	ns, components, units and processes that meet the requirements, taking			
	into account natural lin	nitations such as economics, ecology, security and social aspects.	4		
7	Ability to use the langu	uage skills to exchange and obtain some knowledge gained from the			
	foreign sources.		1		
8	-	problem, to identify the basic requirements, to justify the idea and			
-		results and to compare them.	3		
9	-	professional, ethical, legal and security issues and the responsibilities			
	characteristic for engin		5		
10	_	_			
10		Ability to work productively in multidisciplinary groups, especially in projects requiring			
		to carry out all work in accordance with relevant laws, regulations,	5		
	standards, methods and	-			
		ery Low, 2: Low, 3: Moderate, 4: High, 5: Very High)			
Cours	rse Contents				
Weel	k Chapter	Topics	Exam		
	[1] ch.1, p. 1-39	Introduction. Classification of organic compounds. Carbon			
1	[2] ch.2, p. 35-65	compounds and chemical bonds			
	[3] ch.1, p. 2 -40				
		Acids and bases			
2	[1] ch.2, p. 39-77				
		Energy of activation, Transition State			
	[3] ch.2, p. 41 -61	Energy of activation, Transition State Functional groups			
	[3] ch.2, p. 41 -61	Functional groups Lab: Laboratory Techniques. Safety rules			
	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39	Functional groups			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74-	Functional groups Lab: Laboratory Techniques. Safety rules			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111	Functional groups Lab: Laboratory Techniques. Safety rules			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74-	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds Alkenes and Alkynes			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111 [3] ch.3, p. 61 -90	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111 [3] ch.3, p. 61 -90 [1] ch.4, p. 125-	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds Alkenes and Alkynes Geometric and stereo isomerism. Lab: Distillation			
3	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111 [3] ch.3, p. 61 -90 [1] ch.4, p. 125- 155	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds Alkenes and Alkynes Geometric and stereo isomerism. Lab: Distillation Distillation is the method of choice for the purification of a liquid (the			
	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111 [3] ch.3, p. 61 -90 [1] ch.4, p. 125- 155 [3] ch.4, p. 103 -	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds Alkenes and Alkynes Geometric and stereo isomerism. Lab: Distillation Distillation is the method of choice for the purification of a liquid (the most often). The main objectives of a distillation are:			
	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111 [3] ch.3, p. 61 -90 [1] ch.4, p. 125- 155	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds Alkenes and Alkynes Geometric and stereo isomerism. Lab: Distillation Distillation is the method of choice for the purification of a liquid (the most often). The main objectives of a distillation are: - the elimination of impurities (by definition there are few because			
	[3] ch.2, p. 41 -61 [1] ch.1, p. 1-39 [2] ch.3, p. 74- 111 [3] ch.3, p. 61 -90 [1] ch.4, p. 125- 155 [3] ch.4, p. 103 -	Functional groups Lab: Laboratory Techniques. Safety rules Alkanes and Cycloalcanes, Nomenclature of organic compounds Alkenes and Alkynes Geometric and stereo isomerism. Lab: Distillation Distillation is the method of choice for the purification of a liquid (the most often). The main objectives of a distillation are:			

r	1	- having distillation for stress of the stress of the	
		- obtaining distillation fractions, each corresponding to a range of determined distillation (e.g. oil).	
	[1] ch.9, p. 332-	Electrophilic reactions mechanisms	
5	342	1	
		Nucleophilic substitution reactions mechanisms	
		Aldehydes and ketones, Aromatic aldehydes and ketones	
	[1] ch.5, p. 165- 211	Carboxylic acids, Esters, Acylhalides and Amides	
6		Lab: Chemical separation of mixtures	
	[3] ch.12, p. 396 -	it consists of temporarily modifying, by a simple chemical	
	422	reaction, the chemical function of one (and if possible, only one at a time) of the constituents of the mixture, so that after modification this	
		compound is easily separable from the others by a physical method	
		(solubility for example).	
7			Midterm
		Reactions of alkenes and alkynes.	
	[1] ch.3, p. 77-	Lab: Recrystallization	
8	_	Purpose: Recrystallization is the method of choice for the purification	
	122	of a solid. Principle: This technique is based on the solubility difference of a	
		compound in a solvent or a mixture of solvents depending on the	
		temperature.	
	[1] ch.6, p. 213-	Alcohols and ethers. Radicalic reactions	
9	244		
	[3] ch.1, p. 2 -16		
		Aromatic compounds. Aromatic electrophilic and nucleophilic	
		reactions, Aromatic nitro compounds, Phenols	
		Lab: Importance of Stoichiometry	
10	[1] ch.14,15, p.	The Claisen-Schmidt reaction corresponds to the synthesis of alfa-	
10	493-545	beta-unsaturated ketones by the condensation of an aromatic aldehyde with a ketone. Today's reaction can lead theoretically to 2	
		products A and B. Nevertheless, in the experiment the experimental	
		conditions are optimized in order to preferentially obtain either the	
		compound A or the compound B. The objective of this experiment is to determine the compound that you form.	
	[1] ch., p. 657-	Aldehydes and ketones, Aromatic aldehydes and ketones	
	700		
11	[3] ch.12, p. 396 -		
	437		
	[1] ch.19, p. 713 -	Carboxylic acids, Esters, Acylhalides and Amides, heteroatom.	
12	750	Lab: Chromatography	
12	[3] ch.14, p. 468 -	The purpose of this lab is to acquaint you with the two most common	
	485	adsorption chromatography techniques: thin layer chromatography and column chromatography	
	[2] ch.26, p.	Biomolecules, Amino acids, peptides and proteins	
13	1073-1107	Aromatic acids and amines.	

14	[1] ch.31, p. 1077-1093	Makromolecules. Polymers adn Polymerization Diazo and azo compounds. Organometallic and hetero-organic compounds.	
		Lab: Final reports	
1.5	[1] ch.30, p.	Pentamerous heterocyclic compounds containing a heteroatom.	
15	1057-1077	Hexamerous	
	1037-1077	heterocyclic compounds containing a heteroatom.	
16			Final

Recommended Sources

TEXTBOOK(S)

- 1. Robert T. Morrison and Robert N. Boyd, Organic Chemistry (6th edition) Prentice-Hall of India in 2002.
- 2. William H. Brown, Thomas Pooh, Introduction to organic chemistry, Wiley; (January 12, 2010)

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	10%	
Laboratories	20%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry

University for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Material presented in the lecture as well as assigned readings will be included in testing.
- Late assignments will not be accepted unless an agreement is reached with the lecturer. •
- Cheating and plagiarism will not be tolerated.

Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student **Discipline Regulations**

ECTS allocated based on Student Workload				
Activities	Number	Duration (hour)	Total Workload(hour)	
Course duration in class	14	3	42	
Self-study	14	4,5	63	
Tutorials	14	1	14	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	11	11	
Final Examination	1	3	3	
Preparation for final exam	1	30	30	

Preparation for Presentation	1	14	14
Total Workload			180
Total Workload/30(h)			180/30
ECTS Credit of the Course			6

Chemical engineering (CHEN) program, "Foreign languages-2" department

Course Unit Title	Exposition and Argumentation
Course Unit Code	EXP 2101

Type of Course Unit	Compulsory
Level of Course Unit	2 nd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	0
Practice (hour/week)	3
Laboratory (hour/week)	0
Year of Study	2
Semester when the course unit is delivered	3
Course Coordinator	Sevil G. ALIYEVA
Name of Lecturer (s)	-
Name of Assistant (s)	-
Mode of Delivery	Seminar
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-
Course descriptions	

Course description:

English 2101 is an exposition and argumentative writing course with readings and research in various writing genres. This course examines the rhetorical and practical elements of writing effective arguments. It focuses on methods of organization, analysis, research skills, and the production of short argumentative and expository essays. Students prepare and submit paragraphs of the following types: textual analysis, research paper, and argumentative essay. Exposition and Argumentation provides students with the rhetorical foundations that prepare them for the demands of academic writing. In general, students will be working with sources of various kinds to make claims about issues that are up for debate and to design documents that will appeal to readers. They will also practice different ways of approaching writing assignments, including ways of gathering sources, taking notes and finding patterns, and producing documents that meet different goals. This course will develop rhetorical sensitivity by responding to the other students' writing and by using the teacher's and their peer's suggestions. It will also improve critical thinking through reading, writing, and discussion, and will attend to basic research skills. Additionally, this course examines and practices academic conventions of word usage, sentence structure and variation, and paragraph formation.

Course Objectives:

EXP 2101 is aimed to:

- Demonstrate critical thinking and critical reading strategies;
- Learn basic rhetorical principles to strengthen the effectiveness of written work;
- Adapt writing to different audiences, purposes, and contexts;
- Build written invention strategies, such as observing, brainstorming, associating, drafting;
- Practice a variety of revision and editing techniques for written content, structure and style;
- Create direct grammatically correct sentences;
- Write for varied purposes informing, analyzing, and arguing;
- Demonstrating a clear and effective writing style, write coherent, cohesive, and clear paragraphs;
- Plan, draft, revise, edit, and proofread argumentative essays;

• Use evidence to effectively support argumentative claims or theses.

	ning Outcomes	
	At the end of the course the student will be able to:	Assessment
1	Read, plan, draft, review, collaborate, revise, rewrite, reread, edit, and proofread	2,4
	argumentative essays	
2	Read, write, and think critically	1,4
3	Write coherent, cohesive, and clear paragraphs	1,2,4
4	Use key rhetorical concepts through analysing and composing a variety of texts	1,2,3,4
5	Understand genre conventions for structure, paragraphing, tone, and mechanics	1,2,3,4
6	Avoiding plagiarism, apply citation conventions systematically in their own work	2,4
7	Use evidence and reasoning to effectively support argumentative claims or theses	1,2,3,4
8	Write an organized logical argument	1,3,4
9	Use structures, including grammar, punctuation, and spelling, through practice in composing and revising	1,3,4
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exams, 4 Seminars	
Cou	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics chemistry and chemical engineering.	5, 1
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	2
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	2
6	Ability to design systems, components, units and processes that meet the requirements, takin into account natural limitations such as economics, ecology, security and social aspects.	g 2
7	Ability to use the language skills to exchange and obtain some knowledge gained from the	

	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.		5
	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.		
e	engineering skills	roductively in multidisciplinary groups, especially in projects requiring and to carry out all work in accordance with relevant laws, regulations, ds and guidelines.	2
CL: Co	ontribution Level	(1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Course	e Contents		
Week	Chapter	Topics	Exam
1	[2] Chapter:1 pp.3-13	Peculiarities of academic writing and reading. Genre, audience, and purpose.	
1	[2] Chapter 1 pp.21-29	Thinking critically. Using evidence and reasoning. Making claims. Idea mapping. Practice activity.	
2	[2] Chapter 5 pp.82-124	Rhetorical reading. Reading and note-making. Practice activity.	
3	[3] Chapter 1 pp.3-15	The demands of writing. Organization. Sentence Structure. Practice activity.	
3	[3] Chapter 1 pp.16-18	Pre-writing stage. Organizing the writing. Writing an effective topic sentence. Outlining. Practice activity.	
		Types of Expository Writing. Paragraph Structure. Organization of a paragraph. Writing Assignment.	
[1] 5 Chapter 1 pp.18-38		Logical division of ideas. Coherence. Transition signals. Practice activity.	
5	[3] Chapter 1 pp.18-22	Writing a rough draft. Punctuation rules. Revising and Editing. Peer Review. Writing Assignment.	
6	[3] Chapter 3 pp.39-54;	Evaluating and Using Sources. Avoiding plagiarism.	

	[3]	Descriptive writing. Spatial Order Signals. Writing Assignment.	
7	Chapter 4	· · · · · · · · · · · · · · · · · · ·	
	pp.60-75		
	[3]	Process writing. Transition Signals for Chronological Order. Writing	
7	Chapter 5	Assignment.	
	pp.94-99		
	rr		Midterm
8			Exam
	[1]	Essay Organisation. Logical Division of Ideas. Transitions between	
9	Chapter 4	paragraphs. Practice activity.	
	pp.56-75		
	[1]	Planning an Essay. Essay Outlining. Writing Assignment.	
9	Chapter 4		
	pp.75-80		
	[1]	Cause/effect writing. Organization for Cause/Effect Order. Practice	
10	Chapter 6	activity.	
	pp.94-100		
	[1]	Cause/Effect Signal Words and Phrases. Writing Assignment.	
11	Chapter 6		
	pp.101-110		
	[1] Chapter	Comparison/Contrast writing. Organization of Comparison/Contrast	
11	7 pp.111-	Essays. Practice activity.	
	116		
	[1]	Comparison and Contrast Signal Words. Writing Assignment.	
12	Chapter 7		
	pp.116-126		
	[2]	Problem/Solution writing. Proposing a solution. Writing Assignment.	
13	Chapter 15		
	pp.384-416		
	[1]	Making and Structuring an Argument. Identifying a topic and writing a	
13	Chapter 9	thesis statement. Writing Assignment.	
	pp. 142-146		
	[1]	Writing an Argumentative Essay. Essay Outlining. Practice activity.	
14	Chapter 9		
	pp.146-150		
	[1]	Writing Assignment: Writing an Argumentative Essay.	
15	Chapter 9		
	pp.151-160		
L	1	1	1

Recomm						Final Exam
ACCOUNT	nended Sources					
	 Course book: Writing Academic E Ramage, Bean, and Alice Oshima, Ann 	Johnson The A	Allyn & Bacon C	Guide to Writing	, Brief Edition	
Reading	Materials:					
 George Bishop, Jr., James A. Solan (2005), Introduction to Academic Writing & Reading, Baku Matthew Allen (2004), Smart thinking skills for critical understanding and writing, second edition Stephen Bailey (2006), Academic Writing, A Handbook for International Students, second edition, Routledge Everythings an Argument with Readings 6th edition by Andrea A. Lunsford, John J. Ruszkiewicz, Keith Walters 					vriting, second edition udents, second edition,	
Assessm	ent					
Attendar		0%	At least 75%	class attendance	e is compulsor	У
Presenta	tion	20%				
Quiz		10%				
Midterm	Exam	20%	Written Exam			
Final Ex	am	50%	Written-Oral Exam			
Total		100%				
	ent Criteria des are determined accor	ding to the Ac	ademic Regulat	: f A h = : :	an State Oil ar	d Industry University
Guidelin	es for Undergraduate Stu	•		ions of Azerdaij		ia maasa y Oniversity
Course I	es for Undergraduate Stu Policies Attendance of the course In order for you (and you time. This is especially in based on the feedback you Drafts for peer review and they receive a zero), unle Cheating and plagiarism Oil and Industry Univers	dies is mandatory. r classmates) nportant becau u receive. d peer review ss you've mac will not be tol- ity General Str	to be successful use so much of letters cannot b le arrangements erated. Cheating	in this course, y your grade dependence e submitted after with the lecture g will be penalized	you must subm nds on giving t r the class perior.	hit all of your work on feedback and revising od they are due (i.e.
Course I	es for Undergraduate Stu Policies Attendance of the course In order for you (and you time. This is especially in based on the feedback you Drafts for peer review and they receive a zero), unle Cheating and plagiarism	dies is mandatory. r classmates) nportant becau u receive. d peer review ss you've mac will not be tol- ity General Str	to be successful use so much of letters cannot b le arrangements erated. Cheating	in this course, y your grade dependence e submitted after with the lecture g will be penalized	you must subm nds on giving t r the class perion er. ed according to	it all of your work on feedback and revising od they are due (i.e. o the Azerbaijan State
Course I	es for Undergraduate Stu Policies Attendance of the course In order for you (and you time. This is especially in based on the feedback you Drafts for peer review and they receive a zero), unle Cheating and plagiarism Oil and Industry Univers	dies is mandatory. r classmates) nportant becau u receive. d peer review ss you've mac will not be tol- ity General Str ht Workload	to be successful use so much of letters cannot b le arrangements erated. Cheating	in this course, y your grade dependence e submitted after with the lecture g will be penalized	you must subm nds on giving t r the class perior.	it all of your work on feedback and revising od they are due (i.e.

ECTS Credit of the Course	5		
Total Workload/30(h)	150/30		
Total Workload	150		
Preparation for final exam	1	20	20
Final Examination	1	3	3
Preparation for midterm exams	1	9	9
Midterm Examinations	1	3	3
Self-study	14	3,5	49
Tutorials	14	1	14
Presentation	1	10	10

Chemical engineering (CHEN) program, "General and applied mathematics" department

Course Unit Title	Elementary Differential Equations
Course Unit Code	MATH 2101

Type of Course Unit	Compulsory
Level of Course Unit	2 nd year of CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Year of Study	2
Semester when the course unit is delivered	3
Course Coordinator	Rzayev Ramin
Name of Lecturer (s)	Rzayev Ramin
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	MATH 1201 Calculus for Engineers II
Recommended Optional Program Components	-

Course description:

Differential Equations are the language in which the laws of nature are expressed. Understanding properties of solutions of differential equations is fundamental to much of contemporary science and engineering. The study of differential equations is a beautiful application of the ideas and techniques of calculus to our everyday lives. It could be said that calculus was developed mainly so that the fundamental principles that govern many phenomena could be expressed in the language of differential equations. The course tends to focus on techniques rather than on concepts due to the difficulty in conveying the beauty of the subject in the traditional course on differential equations, because the number of equations that can be treated by analytic techniques is very limited. The differential equations course is one of the few undergraduate courses where it is possible to give students a glimpse of the nature of contemporary mathematical research. One of the major approaches adopted in this course is qualitative. Students are expected to be able to visualize differential equations and their solutions in many geometric ways. For instance, we readily use slope fields, graphs of solutions, vector fields, and solution curves in the phase plane as tools to gain a better understanding of solutions. Students are also asked to become adept at moving among these geometric representations and more traditional analytic representations. Since differential equations are readily studied using the computer, numerical techniques are also emphasized. There are many computer-based tools to investigate the behavior of solutions of differential equations both numerically and graphically. Even if students can find an explicit formula for a solution, they often need to work with the equation both numerically and qualitatively to understand the geometry and the long-term behavior of solutions.

Objectives of the Course:

Looming Outcomes

Introducing and classifying the differential equations and using analytical and numerical method to solve them while showing their applications.

Lea	rning Outcomes	
At t	he end of the course the student will be able to	Assessment
1	demonstrate comprehension and understanding in the topics of the course through symbolic, numeric, and graphic methods;	

		3	
2	classify differential equations by order, linearity, and homogeneity;	3	
3	solve first order linear differential equations both numerically and analytically;	3	
4	solve linear equations with constant coefficients;	3	
5	use separation of variables to solve differential equations;	3	
6	solve exact differential equations;	3	
7	use variation of parameters to solve differential equations;	3	
8	use the method of undetermined coefficients to solve differential equations;	2	
9	determine whether a system of functions is linearly independent using the Wronskian;	1	
10	model real-life applications using differential equations;	2	
11	use power series to solve differential equations;	1	
12	use Laplace transforms and their inverses to solve differential equations;	1	
13	solve systems of linear differential equations using matrix techniques and eigenvalues;	3	
14	use numerical methods to solve first-order and higher-order differential equations;	3	
15	use technology when appropriate and know the limitations of technology;	2	
16	use deductive reasoning and critical thinking to solve problems;	1	
Asse	essment Methods: 1. Final Exam, 2. Independent works 3. Midterm exam		
Cou	rse's Contribution to Program	~~	
1	Ability to only a complex issues and tasks by using the stirt by of and tasks the stirt.	CL	
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics chemistry and chemical engineering.	5	
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard method and syntheses.	-	
3	Ability to use the basics of mathematics, algorithmic principles and methods of compute engineering in the modeling, to design of chemical engineering systems, analyze and interpredata using statistical methods.		

4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.						
5	Ab	Ability to choose and use existing technologies, materials while undertaking project tasks and					
	solving these issues in chemical engineering and ability to eliminate malfunctions that may						
	occ	ur in industrial and	chemical processes or in laboratory equipment				
6			ns, components, units and processes that meet the requirements, taking	2			
			nitations such as economics, ecology, security and social aspects.				
7	Ab	ility to use the langu	age skills to exchange and obtain some knowledge gained from the	1			
	fore	eign sources		-			
8			problem, to identify the basic requirements, to justify the idea and	2			
		•	esults and to compare them.				
9			professional, ethical, legal and security issues and the responsibilities	2			
10		racteristic for engin	ctively in multidisciplinary groups, especially in projects requiring				
10		•	to carry out all work in accordance with relevant laws, regulations,	3			
	_	-		5			
		ndards, methods and	-				
			ery Low, 2: Low, 3: Moderate, 4: High, 5: Very High)				
Cour	rse C	ontents					
We	ek	Chapter	Topics	Exam			
		[1]	Introduction to Differential Equations, Theory and its				
1		Chapter 1	application in modern science, Classification of Differential				
		P1-p29	Equations				
2	[2] 2 Chapter 9 P543-p551		First-Order and Simple Higher-Order Differential Equations , Integrating factor and separable equations, Boundary Conditions, Introduction to Bernoulli and Ricatti equation. Seminar 1: Harmonic Oscillator, RL and RC circuit				
		[1]	Theory of Higher-Order Linear Differential Equations,				
3		Chapter 3	Second order ODE, Characteristic equation, Homogenous vs				
5			Non Homogenous ODE, the Wronskian.				
		Р137-р158					
		[1]	Theory of Higher-Order Linear Differential Equations (continued), Repeated roots, Singular points, Simple higher				
4		Chapter 3	order ODEs				
4		_					
		P158-p167	Seminar 2: Parachute example, Decay of population,				
		[2]	Damped Harmonic oscillator Applications of Linear Differential Equations, Series				
5		Chapter 9	Solution-Frobenius Method,				
5		_					
		P565-p574					
		[2]	More on Series Solution, Singularity, Linear Dependence and				
6		Chapter 9	Independence, Special Functions				
1		P578-p592					

		Seminar 3: Newton's law in viscous environment, Initial and	
		Boundary conditions,	
7			Midterm
8	[3] Chapter 5	More on special functions, Orthogonal vs. non orthogonal function, Legendre Polynomials, Dirac Delta Function	
	P217-p239	Seminar 4: Orthogonality in vectors and polynomials, Gamma and beta functions, Application in special functions	
	[1]	Integral Transform, Laplace transform, Step functions,	
9	Chapter 7	Solution of initial value problems,	
	P309-p324		
10	[1] Chapter 7	Systems of Linear Differential equation, Review from Linear Algebra, Homogenous linear system with constant coefficients	
	P359-p398	Seminar 5: Matrices and Determinants, Eigenvalue, Solving Coupled Springs	
	[1]	Fourier Series, Orthogonally, Kronecker delta, the Euler-	
11	Chapter 10	Fourier Formula, Examples from wave and heat equation	
	P596-p604		
	[1]	Partial Differential Equation in detail, Classification and	
12	Chapter 10	order, Helmholtz eq, Wave equation	
	P589-p595	Seminar 6: Wave equations for the string, 2D wave equation,	
	[1]	Partial Differential equations part 2, Laplace equation,	
13	Chapter 10	separation in Cartesian and non-Cartesian coordinates	
	P643-p652		
14	[4] Chapter 10	Numerical solution of Differential equations, Different methods and their features, Advantage and disadvantages of different approaches, Computing considerations	
	P324-p338	Seminar 7: Algorithmic taylor expansion for sine and cosine, Verlet integration, Rounding error.	
15	[4] Chapter 10	Numerical solution of Differential equations-Part 2, Taylor method, Ruge-Kutta and Hamming improvement on older	
	P3338-p350	techniques, General discussions on Computing methods	
16			Final

TEXTBOOK(S)

1-W.Boyce, R.DiPrima, Elementary Differential Equations and Boundary value Problems, Wiely edition. 2010

2-G.Arfken, H.Weber-Mathematical methods for Physicists Sixth Edition, Elsevier-, 2005

3-F.Byron, R.Fuller-Mathematics of Classical and Quantum Physics, Dover Publication-1970

4-S-Salleh, et al, Computing for Numerical Methods Using Visual C++-John Wiley and Sons 2007

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Independent works	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU Guidelines for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Independent works	10	1	10
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology" department

Course Unit Title	Technical English I
Course Unit Code	ENGL 2101

Type of Course Unit	Compulsory				
Level of Course Unit	2 nd year CHEN program				
National Credits	0				
Number of ECTS Credits Allocated	5				
Theoretical (hour/week)	0				
Practice (hour/week)	3				
Laboratory (hour/week)	0				
Year of Study	2				
Semester when the course unit is delivered	3				
Course Coordinator	Minira M. Aghahuseynova				
Name of Lecturer (s)	Minira M. Aghahuseynova				
Name of Assistant (s)	-				
Mode of Delivery	Seminar				
Language of Instruction	English				
Prerequisites	-				
Recommended Optional Program Components	-				
Course description:					
-	ire new language knowledge and skills and improve existing.				
The lexical aspect of speech: The lexical minimum of graduates at the Technical English is at least 500 lexical units.					
The expansion of the vocabulary of students is due to the use of special terms, international lexis vocabulary, new					
meaning of known words.					
The grammatical aspect of speech: Students continue to learn and improve the skills of recognizing and using in speech					
previously studied grammatical structures: infinitive	previously studied grammatical structures: infinitive and infinitive turns, absolute constructions, passive voice,				

gerund, modal verbs, articles. **Objectives of the Course:**

To give students Knowledge of English in the field of Technical means, industrial technology and also contribute to the development of student's abilities to use English as a means of communication in the technical business.

-To motivate leaners to acquire listening and speaking skills in both formal and informal context.

-To focus on question forms and to make them understand the importance of using question tags and also the functional use of transformation of sentences.

-To improve their reading habit and to train them in critical and analytical reading.

-To equip them to write for academic as well as work place context

-To enable students to face interviews.

For realization of this goal it is supposed to solve the following tasks:

-to give students the terminology of selected fields

-to develop skills of translation, attracting and annotation of technical texts

Lear	ning Outcomes	
At th	e end of the course the student will be able to	Assessment
1	Understand the concepts relating to Chemical Engineering in English.	1
2	The basic difficulties of translation at the level of vocabulary and grammar	1,2,3
3	The rules for translating scientific-technical and patent literature	1,3
4	Use intelligent, bilingual dictionaries and other reference literature to solve translation problems	1,2,4

5	Quickly find in	n the text certain information (digital indicators, facts, characteristics)	2,3	
6	Recognize in the text complex grammatical structures, the use of which is characteristic of science-popular literature, edit the text in native language			
7	Work with the listened/ read text: determine the topic, predict the content of the text on the title, the key words, to establish a logical sequence of basic facts.			
8		rmation search, including with the help of computer facilities, to enter into also participate in a collective discussion of problems.	3	
Asses	ssment Method	s: 1. Presentation, 2. Midterm, 3. Seminars, 4. final exam		
Cour	se's Contribut	ion to Program		
			CL	
1		e complex issues and tasks by using the principles of mathematics, physics, chemical engineering.	5	
2		sute, coordinate, implement, substantiate laboratory processes while carrying nents and to obtain and extract chemical compounds using standard methods	4	
3	Ability to use engineering in	the basics of mathematics, algorithmic principles and methods of computer the modeling, to design of chemical engineering systems, analyze and interpret istical methods.	4	
4	Ability to use in engineering	the techniques, materials, skills and modern engineering tools which are used and to carry out industrial and chemical processes, control them and to apply neering principles at designing of these processes.	4	
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.			
6		gn systems, components, units and processes that meet the requirements, sount natural limitations such as economics, ecology, security and social	4	
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.			
8		yze the problem, to identify the basic requirements, to justify the idea and the results and to compare them.	3	
9		erstand professional, ethical, legal and security issues and the responsibilities for engineering.	3	
10	engineering sk standards, met	k productively in multidisciplinary groups, especially in projects requiring ills and to carry out all work in accordance with relevant laws, regulations, hods and guidelines.	2	
		vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)		
	se Contents		1	
Week	c Chapter	Topics	Exam	
1	[1] Ch.1	Overview of Chemistry education. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.		
2	[1] Ch.2	History of chemistry. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.		
3	[1] Chemical Process industry. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.			

4	[1]	Revision and development. Units 1 and 3	
	Ch.4	Matter in the universe. Listening, reading and scanning, writing, speaking	
5	[1] Ch.5	and representing, difference between hearing and listening, listening to informal conversation.	
6	[1] Ch.6	Why is water so important? Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.	
7			Midterm
8	[1] Ch.7	The importance of laboratory experiments. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.	
9	[1] Ch.8	Revision and development. Units 5 and 6.	
10	[1] Ch.9	Organic chemistry. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.	
11	[1] Ch.10	The age of polymers. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.	
12	[1] Ch.11	Revision and development. Units 7 and 8.	
13	[1] Ch.12	Man and his environment. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.	
14	[1] Ch.13	Science and its future. Listening, reading and scanning, writing, speaking and representing, difference between hearing and listening, listening to informal conversation.	
15	[1] Ch.14	Revision and development. Units 9 and 10.	
16			Final

TEXTBOOK(S)

- 1. Califford A. Whitcomb, Leslie E. Whitcomb Effective interpersonal and team communication skills for engineers.1st edition, Wiley, 2008.
- 3. Carmen Bombardó Solés Marta Aguilar Pérez Clàudia Barahona Fuentes, Technical Writing A Guide for Effective Communication, Edicions UPC, 2007.

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	

Quiz	10%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7
Final Examination	1	3	3
Preparation for final exam	1	20	20
Self-study	14	4	56
Total Workload	Ι	1	150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Industrial economy and management" department

Course Unit Title	Professional practice and ethics	
Course Unit Code	CHEM 2201	
Type of Course Unit	Compulsory	
Level of Course Unit	2 nd year of CHEN program	

ECTS allocated based on Student Workload

National Credits	0		
Number of ECTS Credits Allocated	4		
Theoretical (hour/week)	2		
Practice (hour/week)	1		
Laboratory (hour/week)	-		
Year of Study	2		
Semester when the course unit is delivered	4		
Course Coordinator	Samira Mammadova		
Name of Lecturer (s)	Samira Mammadova		
Name of Assistant (s)	-		
Mode of Delivery	Face to Face, Seminar.		
Language of Instruction	English		
Prerequisites	-		
Recommended Optional Program Components	-		
Course description: It is essential for professionals in any field to have an understanding of the ethical problems			

and principles in their field. But anyone, no matter what their job, must deal with many other professions as well. Part of professional ethics is the understanding of the ethics of other professions: how they interact and what can be expected from them as correct ethical behaviour. In turn, any professional will benefit from a critical scrutiny of their own ethics by those from other professions. The general principles of professional ethics will be examined, as well as the distinctive problems of the different fields.

Objectives of the Course:

Students should know more about the nature of a profession, professional codes of ethics, confidentiality, whistleblowing, the responsibility of business to the environment, uses and abuses of human research, and animal ethics in research.

Learning Outcomes

At the	e end of the course the student will be able to	Assessment
1	Ability to engage in informed critical reflection on the nature of professionalism and ethical challenges inherent in professionalism	3,5
2	Knowledge of prominent normative ethics frameworks – consequentialist, deontological, virtue, and contractualism	1,2,3,4,5
3	Awareness of types of ethical challenges and dilemmas confronting members of a range o media, police, law, medicine, research)	f profess2i,o3ns (busine
4	Ability to relate ethical concepts and materials to ethical problems in specific professions and professionalism	5
5	Ability to research appropriate material in relation to set questions in writing essays meeting the highest standards of rigor and clarity.	1,3,5
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Seminars , 4. Midterm Exam, 5. Lectures	S
Cou	rse's Contribution to Program	

			CL		
1	physics, chen	lve complex issues and tasks by using the principles of mathematics, nistry and chemical engineering.	2		
2	carrying out	ecute, coordinate, implement, substantiate laboratory processes while the experiments and to obtain and extract chemical compounds using hods and syntheses.	2		
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.				
4	are used in e	e the techniques, materials, skills and modern engineering tools which ngineering and to carry out industrial and chemical processes, control apply chemical engineering principles at designing of these processes.	2		
5	tasks and so	bose and use existing technologies, materials while undertaking project living these issues in chemical engineering and ability to eliminate that may occur in industrial and chemical processes or in laboratory	2		
6	requirements security and s	esign systems, components, units and processes that meet the , taking into account natural limitations such as economics, ecology, social aspects.	4		
7	Ability to use from the fore	e the language skills to exchange and obtain some knowledge gained ign sources.	5		
8	•	alyze the problem, to identify the basic requirements, to justify the idea evaluate the results and to compare them.	4		
9		nderstand professional, ethical, legal and security issues and the es characteristic for engineering.	5		
10 CL: C	requiring eng laws, regulati	ork productively in multidisciplinary groups, especially in projects gineering skills and to carry out all work in accordance with relevant ions, standards, methods and guidelines. Wel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	5		
	se Contents				
Weel	k Chapter	Topics	Exam		
1	[1] Ch.1	Introduction. Introduction to ethics. Authority theories, intuitionist theories, egoist theories, consequentialist theories, and deontological theories, feminist ethics.			
2	[2] Ch.2	Perspectives on professional ethics. Professional practice			
3	[2] Ch.2,3	What is the profession? Just following the rules? The Ordinariness of Professional Ethics The Excuses That Make Professional Ethics Irrelevant			
3	3	Employee rights. Codes of professional ethics and conduct			
4	3,4	Meaning of planning Planning Values/ Foundations of Public Planning (utilitarianism; libertarianism; communitarianism) Palnning ethics . Planning values			
5	5	Planning values	Quiz		

6	5,6	Request for proposals. (RFP)	
7	6	How to respond to an RFP. How to build a proposal.	
			Midterm
8	7	Professional and Research ethics	
9	8	Typology of ethical dilemmas	
10	8	Ethics and Leadership	
11	9	Creating an Ethical organizational culture	
12	9	Creating an Ethical organizational culture	
13	10	Computer Misuse	
14	10	Computer Misuse. Privacy and data protection	Quiz
15	11	Law , Law. Informing Clients About Limits to Confidentiality. Two Concepts of a Lawyer in an Adversary System Education. Democratic education. Ethics and Educator/Student Relationships Education	
16			Final

TEXTBOOK(S)

- 1. John Rowan & Samuel Zinaich, Jnr. Ethics for the Professions. Wadsworth. 2003
- 2. Joan C. Callahan, Ethical issues in professional life, Oxford University Press, 1988
- 3. Alan H. Goldman, The moral foundations of professional ethics, Rowman and Littlefield, 1988
- 4. Ruth F. Chadwick, (ed.) Ethics and the professions, Avebury, 1994
- 5. Justin Oakley, Dean Cocking, Virtue ethics and professional roles. Cambridge University Press, 2001

Assessment		
Attendance	-	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	-	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	
Assossment Criteria		

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial

University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload			
Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	6	6
Self-study	14	4	46
Tutorials	14	0,5	7
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7
Final Examination	1	3	3
Preparation for final exam	1	11	11
Total Workload	I	1	120
Total Workload/30(h)	120/30		
ECTS Credit of the Course			4

Course Unit Title	Chemical Engineering Thermodynamic	cs I	
Course Unit Code	CHEM2202		
Type of Course Unit	Compulsory		
Level of Course Unit	2 nd year CHEN program		
National Credits	-		
Number of ECTS Credits Allocated	6		
Theoretical (hour/week)	2		
Practice (hour/week)			
Laboratory (hour/week)	1		
Year of Study	2		
Semester when the course unit is delivered	4		
Course Coordinator	Professor Baghiyev Vagif Lachin		
Name of Lecturer (s)	Professor Baghiyev Vagif Lachin		
Name of Assistant (s)	Taghiyeva Tahmina Chingiz		
Mode of Delivery	Face to Face, laboratory		
Language of Instruction	English		
Prerequisites	CHEM2101 Chemical engineering ma balances	erial and energy	
Recommended Optional Program Components	-		
Course description:			
Introduction to the concept of energy and the laws g on thermodynamic properties and the first and secon			
these concepts into the analysis of basic power cycle		-	
Objectives of the Course:			
The students will be asked to demonstrate their know	wledge of the material covered in Thermodynan	nics I through	
their mastery of the following course objectives:			
1. Introduce basic physical concepts and application	s of thermodynamics, and their consequences f	or engineering	
processes and operations			
2. Familiarize students with the properties of pure su	ibstances along with basic principles governing	transformations	
of energy 3. Emphasize the first and second law of thermodyna	amics		
4. Provide an elementary introduction to cycles	annes		
5. Introduce the behavior of gas mixtures			
Learning Outcomes			
At the end of the course the student will be able to		Assessment	
1 define thermodynamic concept		1,2,3,	
2 Learn the 1st law of thermodynamics and other	er basic concepts.	1,2,3,4	
3 Realize the volumetric properties of pure fluids.		1,2,3,4	
4 Learn the heat effects		1,2,3,4	
5 Apply the second law on various systems.		1,2,3	
Assessment Methods: 1. Final Exam, 2. Presentation	n, 3. Lab. Work, 4. Midterm		
Course's Contribution to Program			
		CL	
1 Ability to solve complex issues and task physics, chemistry and chemical engineer	ks by using the principles of mathematics	, 5	
physics, enclined y and enclined engliced			

2	carrying out the	cute, coordinate, implement, substantiate laboratory processes while he experiments and to obtain and extract chemical compounds using	4
		ods and syntheses.	
3	computer engi	e the basics of mathematics, algorithmic principles and methods of ineering in the modeling, to design of chemical engineering systems, interpret data using statistical methods.	2
4	are used in en	the techniques, materials, skills and modern engineering tools which gineering and to carry out industrial and chemical processes, control oply chemical engineering principles at designing of these processes.	2
5	tasks and sol	ose and use existing technologies, materials while undertaking project ving these issues in chemical engineering and ability to eliminate that may occur in industrial and chemical processes or in laboratory	2
6	requirements, security and so	1	5
7	from the foreig	-	1
8	and critically e	lyze the problem, to identify the basic requirements, to justify the idea evaluate the results and to compare them.	2
9	responsibilitie	nderstand professional, ethical, legal, security issues, and the s characteristic for engineering.	3
10	requiring engi laws, regulation	ork productively in multidisciplinary groups, especially in projects ineering skills and to carry out all work in accordance with relevant ons, standards, methods and guidelines.	5
		el (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
	se Contents		
Weel	k Chapter	Topics	Exam
1	Textbook 1, chapter 2, pp.10- 12	Definitions of fundamental concepts of thermodynamics: Thermodynamics and energy, dimensions and units, closed and open systems, forms of energy, state, changes of state and cycles, temperature, zeroth law of thermodynamics, practise	
2	2	Definitions of fundamental concepts of thermodynamics: Thermodynamics and energy, dimensions and units, closed and open systems, forms of energy, state, changes of state and cycles, temperature, zeroth law of thermodynamics, practise Lab: Heat of neutralization of strong base with strong acid. The purpose of this work is to determine the heat of neutralization of a strong base by a strong acid. Used equipment - bomb calorimeter	
3	3	1st law of thermodynamics and other basic concepts	
4	3	1st law of thermodynamics and other basic concepts Lab: Heat of neutralization of strong base with strong acid. The purpose of this work is to determine the heat of neutralization of a strong base by a strong acid. Used equipment - bomb calorimeter	
5	3	1st law of thermodynamics and other basic concepts	
6	3	Volumetric properties of pure fluids	
L			

		Lab: Heat of dissolution. Purpose of work: determination of integral and calculation of differential heats of dissolution of some highly soluble salts in	
		water. Used equipment - bomb calorimeter	
7	7		Midterm
8	3	Volumetric properties of pure fluids Lab: Heat of dissolution. Purpose of work: determination of integral and calculation of differential heats of dissolution of some highly soluble salts in water. Used equipment - bomb calorimeter	
9	3	Heat effects	
10	3	Heat effects Lab: Heat of dissolution. Purpose of work: determination of integral and calculation of differential heats of dissolution of some highly soluble salts in water. Used equipment - bomb calorimeter	
11	3	Heat effects	
12	4	2nd law of thermodynamics Lab: Heat of dissolution. Purpose of work: determination of integral and calculation of differential heats of dissolution of some highly soluble salts in water. Used equipment - bomb calorimeter	
13	4	2nd law of thermodynamics	
14	4	2nd law of thermodynamics Lab: Heat of dissolution. Purpose of work: determination of integral and calculation of differential heats of dissolution of some highly soluble salts in water. Used equipment - bomb calorimeter	
15	4	Exercise	
16			Final
TEXTBO 1. Howar	d De Voe, T 1 Sharma, A	es hermodynamics and Chemistry, Second Edition, Version, 2015, 532 pages. Handbook Of Chemical Thermodynamics, Mittal Publications, 2005, 277 page	·s.
Attendan	ce	0% At least 75% class attendance is compulsory	
Presentat	ion	10%	
Laborato	ries	20%	
Midterm	Exam	20% Written Exam	
Final Exam		50% Written-Oral Exam	
Total		100%	
Final gra Course I	Policies	mined according to the Academic Regulations of ASOIU for Undergraduate St	tudies
•	Late assignm Students can Cheating and	of the course is mandatory. Thents will not be accepted unless an agreement is reached with the lecturer. Then not use calculators during the exam. I plagiarism will not be tolerated. Cheating will be penalized according to the A strial University General Student Discipline Regulations.	Azerbaijan Stat

Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	8	
Tutorials	14	1	14
Self-study	14	5	70
Midterm Examination	1	3	3
Preparation for midterm exam	1	11	11
Final Examination	1	3	3
Preparation for final exam	1	30	30
Total Workload			180
Total Workload/30(h)			180/30
ECTS Credit of the Course			6

Course Unit Title	Technical English II
Course Unit Code	ENGL 2201
Type of Course Unit	Compulsory
Level of Course Unit	2 nd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	0
Practice (hour/week)	3
Laboratory (hour/week)	0
Year of Study	2
Semester when the course unit is delivered	4
Course Coordinator	Narmina Guliyeva
Name of Lecturer (s)	Narmina Guliyeva
Name of Assistant (s)	-
Mode of Delivery	Seminar
Language of Instruction	English
Prerequisites	ENGL 2101Technical English I
Recommended Optional Program Components	-

Course description:

In the framework of this course students continue to acquire new language knowledge and skills and improve existing. The lexical aspect of speech: The lexical minimum of graduates at the Technical English is at least 500 lexical units. The expansion of the vocabulary of students is due to the use of special terms, international lexis vocabulary, new meaning of known words.

The grammatical aspect of speech: Students continue to learn and improve the skills of recognizing and using in speech previously studied grammatical structures: infinitive and infinitive turns, absolute constructions, passive voice, gerund, modal verbs, articles.

Objectives of the Course:

To give students Knowledge of English in the field of Technical means, industrial technology and also contribute to

the development of student's abilities to use English as a means of communication in the technical business.

-To motivate leaners to acquire listening and speaking skills in both formal and informal context.

-To focus on question forms and to make them understand the importance of using question tags and also the functional use of transformation of sentences.

-To improve their reading habit and to train them in critical and analytical reading.

-To equip them to write for academic as well as work place context

-To enable students to face interviews.

For realization of this goal it is supposed to solve the following tasks:

-to give students the terminology of selected fields

-to develop skills of translation, attracting and annotation of technical texts

At th	e end of the course the student will be able to	Assessment	
1	Understand the concepts relating to Chemical Engineering in English.	1	
2	The basic difficulties of translation at the level of vocabulary and grammar	1,2,3	
3	The rules for translating scientific-technical and patent literature	1,3	
4	Use intelligent, bilingual dictionaries and other reference literature to solve translation problems	1,2	
5	Quickly find in the text certain information (digital indicators, facts, characteristics)	2,3	
6	Recognize in the text complex grammatical structures, the use of which is characteristic of science-popular literature, edit the text in native language	1,2,3	
7	Work with the listened/ read text: determine the topic, predict the content of the text on the title, the key words, to establish a logical sequence of basic facts.	1,3	
8	Carry out information search, including with the help of computer facilities, to enter into a dialogue and also participate in a collective discussion of problems.	1,2,3	
Ass	essment Methods: 1. Presentation, 2. Midterm, 3. Final exam		
Сог	rse's Contribution to Program		
		CL	
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	5	
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	4	
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpred data using statistical methods.		
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.		
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	3	
	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social	4	
6	aspects.		

8 4	Ability to analyze t	he problem, to identify the basic requirements, to justify the idea and	3
	critically evaluate the results and to compare them.		
	-	nd professional, ethical, legal and security issues and the responsibilities	3
	•		5
	characteristic for er		2
	•	ductively in multidisciplinary groups, especially in projects requiring	2
		nd to carry out all work in accordance with relevant laws, regulations,	
	standards, methods	-	
		: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Course	e Contents		
Week	Chapter	Topics	Exam
	[1]	Technology in use	
1	Unit 1	Describing technical functions and applications	
	Olint I	Explaining how technology works	
		Technology in use	
2	[1]	Emphasizing technical advantages	
	Unit 1	Simplifying and illustrating technical explanations	
		Materials technology	
		Describing specific materials	
3	[1]	Categorising materials	
	Unit 2	Specifying and describing properties	
		Discussing quality issues	
		Components and assemblies	
		Describing component shapes and features	
4	[1]	Explaining and assessing manufacturing techniques	
·	Unit 3	Explaining jointing and fixing techniques	
		Describing positions of assembled components	
		Engineering design	
5	[1]	Working with drawings	
5	Unit 4	Discussing dimensions and precision	
C	[1]	Engineering design	
6	Unit 4	Describing design phases and procedures	
		Resolving design problems	
7			Midterm
	[1]	Breaking point	
8	Unit 5	Describing types of technical problem	
		Assessing and interpreting faults	
9	[1]	Breaking point	
,	Unit 5	Describing the causes of faults	

		Discussing repairs and maintenance	
	[1]	Technical development	
10	Unit 6	Discussing technical requirements	
	Unit 0	Suggesting ideas and solutions	
	[1]	Technical development	
11	Unit 6	Assessing feasibility	
		Describing improvements and redesigns	
		Procedures and precautions	
	[1]	Describing health and safety precautions	
12	[1] Unit 7	Emphasising the importance of precautions	
	Unit /	Discussing regulations and standards	
		Working with written instructions and notices	
		Monitoring and control	
	[1] Unit 8	Describing automated systems	
13		Referring to measurable parameters	
		Discussing readings and trends	
		Giving approximate figures	
		Theory and practice	
		Explaining tests and experiments	
14	[1] Unit 9	Exchanging views on predictions and theories	
	Unit 9	Comparing results with expectations	
		Discussing causes and effects	
		Pushing the boundaries	
	[1]	Discussing performance and suitability	
15	Unit 10	Describing physical forces	
	Unit 10	Discussing relative performance	
		Describing capabilities and limitations	
16			Final

TEXTBOOK(S)

- 1. Mark Ibbotson, Cambridge English for engineering. Cambridge University Press 2008
- 2. Armer Tamzen , Cambridge english for scientists, Cambridge University Press 2011
- 3. Bonamy David, Jacques C., Technical english 1A. Student's book and workbook, Pearson Longman 2008
- 4. Glendining H. Eric, McEwan John, Oxford english for information technology. Cambridge University Press 2011

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	8	8
Tutorials	14	1,5	21
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7
Final Examination	1	3	3
Preparation for final exam	1	20	20
Self-study	14	3,5	49
Total Workload	I	1	150
Total Workload/30(h)	150/30		
ECTS Credit of the Course			5

ECTS allocated based on Student Workload

Chemical engineering (CHEN) program, "General and applied mathematics" department

Course Unit Title	Numerical Computing in Chemical and Biochemical
	Engineering
Course Unit Code	COMP 2201
Type of Course Unit	Compulsory
Level of Course Unit	2 nd year of CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Year of Study	2
Semester when the course unit is delivered	4
Course Coordinator	Nigar Ismayilova
Name of Lecturer (s)	Nigar Ismayilova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	COMP 1201 Computers and chemical engineering
Recommended Optional Program Components	-

Course description:

Numerical analysis continues the long tradition of practical mathematical calculations that is extremely important, for instance, in astronomy, mechanical engineering, applied physics, etc. Much of numerical analysis is concerned with obtaining approximate solutions while maintaining reasonable bounds on errors. Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century also the life sciences and even the arts have adopted elements of scientific computations. Ordinary differential equations appear in celestial mechanics (planets, stars and galaxies); numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology. Before the advent of modern computers numerical methods often depended on hand interpolation in large printed tables. Since the mid-20th century, computers calculate the required functions instead. These same interpolation formulas nevertheless continue to be used as part of the software algorithms for solving differential equations.

The course will develop numerical methods aided by technology to solve algebraic, transcendental, and differential equations, and to calculate derivatives and integrals. The course will also develop an understanding of the elements of error analysis for numerical methods and certain proofs. The course will further develop problem solving skills. The overall goal of the field of numerical analysis is the design and analysis of techniques to give approximate but accurate solutions to various hard problems.

Objectives of the Course:

Introducing Numerical methods and its importance and application in modern science and engineering

and employing computers to tackle problems related to this field while discussing the problems and

difficulties of different approaches.

Learning Outcomes

At th	e end of the course the student will be able to	Assessment	
1	Learn the objectives of numerical analysis		
2	Classification of methods for numerical analysis	3	
3	Familiarity with tools for numerical analysis	2	
4	Solve real life problems in engineering	2	
5	Difficulties and downsides of the approaches	2	
6	Simulation and modelling of a specific project related to Chemical engineering	1	
	essment Methods: 1. Final Exam, 2. Independent works 3. Midterm exam		
Cou	rse's Contribution to Program		
		CL	
1	Ability to solve complex issues and tasks by using the principles of mathematics physics, chemistry and chemical engineering.	s, 5	
2			
3			
4	are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.		
5	5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment		
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.		
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources		
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.		
9			
10	Ability to work productively in multidisciplinary groups, especially in project requiring engineering skills and to carry out all work in accordance with relevan laws, regulations, standards, methods and guidelines.		

CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)

Course	Contents		
Week	Chapter	Topics	Exam
1	[1] Chapter 1 and 2, (p1-p10) [1]	Approximations and Round-off Errors, The importance of care in the case of floating-point calculations, Examples from science in Geometry and Rocket science. Lack of precision vs. speed and memory.	
	Chapter 1 (p1-p7)		
2	[1] Chapter 3 and 4 from (p10-p13) [1]	Truncation Errors and the Taylor Series, examples from exponential functions and trigonometric functions, memory limitations in different programming languages (C vs. Python) and algorithm designs	
	Chapter 10 (p610-p618)	Seminar 1: Integer vs. Floating point arithmetic, Round off errors, Lack of precision	
3	[1] Chapter 10 (p619- p623) [1] Chapter 10 (p327-	Additional discussions of Taylor series for the case of trigonometric equations and its application on approximations. General knowledge on Fourier series	
	330)		
4	[1] Chapter 12 (p36- 51) [2] Chapter 6 (p193- 201)	 Roots of Equations – Open Methods, Bisections and Newton-Raphson methods, Advantages and limitations of each process, Algorithms and Programming tricks Seminar 2: Taylor expansion for exponential and trigonometric functions and computer considerations, Roots for Quadratic and Cubic equations-Bisecting in action. 	
5	[1] Chapter 6 (p203- 206) [2] Chapter 12-14 (p38-57)	Roots of Equations Part 2– Roots of Polynomials, Examples from non-linear equation (Kepler equation), Introducing other methods (secant method and Iterations)	
6	[2] Chapter 2 of (p13-35) [1] Chapter 5 (127- 130)	Linear Algebraic Equations – Introductory subjects regarding matrices and vectors, Determinants etc., Computer considerations in modern programming languages (arrays vs. vectors in c++) and leakage of memory Introducing Gauss-Jordan methods Seminar 3: Flaws of Bisectioning, Newton-Raphson for non- linear equations, Practical examples of Newton-Raphson (e.g.	
7		Phase Diagrams)	Midterm
,			1,110(0111

8	[1] Chapter 5 (131- 161) [1] Chapter 32 (p133- 149)	Linear Algebraic Equations – Continuing Gauss-Jordan with examples and algorithmic approach. Forward and Backward substitutions and LU factorization	
9	[1] Chapter 5 (p13- p16) [1] Chapter 7 (p227- p231)	 Curve Fitting – Interpolation, Lagrange interpolations Error of the Lagrange interpolation Algorithms for Lagrange interpolations Seminar 4: Systems of equations, Intersection of two lines, Extension to higher dimensions, Algorithmic approaches to eliminations 	
10	[1] Chapter 7 (p227-p234)	Curve-Fitting – Newton and Hermit interpolations Divide-difference method Errors of newton interpolation and algorithms for the Newton interpolation	
11	[2] Chapter 7 (p244- p249) Chapter 8 [2](p267-p270)	Curve-Fitting – Least-Squares Approximation Differentiation and Integration Discretization and errors, central difference for first and second derivatives Seminar 5: Forward and Backward substitution in action, Using special types of matrices for elimination, Efficiency considerations.	
12	[1] Chapter 8 (p271- p276)	Differentiation and Integration-part 2 More on errors and discretization related to differentiation Numerical integration and its importance. Trapezium methods and Simpson rules. Considerations on precision and applicability.	
13	[4] Chapter 4 (p155- p161) [1] Chapter 10 (p324- p329)	Considerations on Numerical Integration and Introducing new techniques. Algorithms and implementation in computer Differential equations part 1 Mathematical Backgrounds Initial values and Taylor Series method Seminar 6: LU Factorizations, Determinants, Regression for finding polynomials. Examples from Signal Processing	
14	[2] Chapter 10 (p330- p338)	finding polynomials, Examples from Signal Processing. Differential equations part 2 Euler's method and its limitations. Runge-Kutta of order 2 and order 4 and discussion on its advantages and disadvantages. Speed and memory considerations Modern methods (Corrector-predictor and Hamming's method)	

15	Random parts from ref no 4	Additional topics and perspective of the subjects (Chebyshev polynomials- Sorting and etc.) Seminar 7: Differentiation, Discretization and related considerations, Simpson methods for numerical integration	
16			Final

TEXTBOOK(S)

- 1. Atilla Matte, Introduction to Numerical Analysis with C programs, Brooklyn college of Newyork-2014
- 2. S-Salleh, et al, Computing for Numerical Methods Using Visual C++-John Wiley and Sons 2007
- 3. G.Thomas et al, Thomas's Calculus, Pearson, 2013
- 4. G.Thomas, W-Press et al, Numerical Recipes 3rd edition- Cambridge University Press-2007

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Independent works	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU Guidelines for

Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload			
Activities	Number	Duration	Total
Activities	INUITIDEI	(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	8	8

Self-study	14	3,5	49
Tutorials	14	1,5	21
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7
Final Examination	1	3	3
Preparation for final exam	1	20	20
Total Workload	•	•	150
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology" department

Course Unit Title	Chemical Engineering Thermodynamics II		
Course Unit Code	CHEM3101		

Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	-
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	-
Laboratory (hour/week)	1
Year of Study	3
Semester when the course unit is delivered	5
Course Coordinator	Baghiyev Vagif Lachin
Name of Lecturer (s)	Baghiyev Vagif Lachin
Name of Assistant (s)	Taghiyeva Tahmina Chingiz
Mode of Delivery	Face to Face, laboratory
Language of Instruction	English
Prerequisites	CHEM 2202 Chemical Engineering Thermodynamics I
Recommended Optional Program Components	-

Course description:

Thermodynamic properties of fluids. Describes fundamental property relation. Numerical practice about solution thermodynamics. Chemical reaction equilibria.

Objectives of the Course:

Students should be able to

- 1. use thermodynamics to solve problems in solution, phase, and chemical equilibria.
- 2. select specific equations of state or correlations that are appropriate for treating a given engineering problem.
- 3. describe the molecular-level phenomena that give rise to solution behavior.
- 4. compute the equilibrium constant for a given reaction at any temperature.
- 5. compute the extent of reaction and equilibrium composition of single and multiple chemical reactions.

Lear	ning Outcomes	
At the	e end of the course the student will be able to	Assessment
1	Will have knowledge about thermodynamic properties of fluids	1,2,3,
2	Will have knowledge about theory of solution thermodynamics	1,2,3,4
3	Will do numerical practice about solution thermodynamics	1,2,3,4
4	obtain some organic substance using initial components and identify it in laboratory conditions.	1,2,3,4
5	Interprets the chemical reaction equilibria	1,2,3
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Lab. Work, 4. Midterm exam	
Cou	rse's Contribution to Program	
		CL
1	1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	
3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.		
4	Ability to use the techniques, materials, skills and modern engineering tools which are use in engineering and to carry out industrial and chemical processes, control them and to app chemical engineering principles at designing of these processes.	

5	•	ose and use existing technologies, materials while undertaking project tasks and	
	-	issues in chemical engineering and ability to eliminate malfunctions that may	1
		trial and chemical processes or in laboratory equipment.	
6	6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.		5
	•	the language skills to exchange and obtain some knowledge gained from the	1
	foreign sources.		
8	•	lyze the problem, to identify the basic requirements, to justify the idea and late the results and to compare them.	3
	-	erstand professional, ethical, legal and security issues and the responsibilities	
	-	for engineering.	2
10	Ability to wor	rk productively in multidisciplinary groups, especially in projects requiring	
	engineering sk	kills and to carry out all work in accordance with relevant laws, regulations,	3
	standards, met	hods and guidelines.	
CL: C	ontribution Lev	vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cours	se Contents		
Week	Chapter	Topics	Exam
1	7,8	Thermodynamic properties of fluids	
		Thermodynamic properties of fluids	
		Lab: Ebullioscopy. The aim of this work is to determine the molecular	
2	7,8	weight of tartaric acid by ebullioscopy and, thus, to determine the degree of	
		its purity. Used equipment Landsberg device which consists of a glass	
		vaporizer, a test tube and a Beckmann thermometer	
3	9,10	Solution thermodynamics: Theory	
		Solution thermodynamics: Theory	
	0.10	Lab: Ebullioscopy. The aim of this work is to determine the molecular	
4	9,10	weight of tartaric acid by ebullioscopy and, thus, to determine the degree of its purity. Used equipment Landsberg device which consists of a glass	
		vaporizer, a test tube and a Beckmann thermometer	
5	9,10	-	
5	5,10	Solution thermodynamics: Theory Solution Thermodynamics: Applications	
		Lab: Binary solutions. The aim of this work is to build a liquid-vapor	
		equilibrium diagram in the composition-boiling-point coordinates at	
6	9,10	atmospheric pressure for a binary system consisting of unlimitedly mixing	
		liquids. Used equipment: distillation cube, reflux refrigerator, thermometer	
		and condensate collection pocket.	
7			Midterm
		Solution Thermodynamics: Applications	
		Lab: Heat of evaporation. The aim of this work is to determine the heat of	
8	9,10	evaporation of benzene by the dynamic method. The main parts of the	
		installation are: a boiling chamber with a built-in reflux condenser and a	
		thermometer, a heater, a water cooler, a manometer and a vacuum pump.	
9	8,13	Phase Equilibria	
		Phase Equilibria	
10	8,13	Lab: Determining of phase distribution constant. Purpose of the work is to	
10	0,13	determine the distribution coefficient of acetic acid between water and	
		benzene. Used equipment: orbital shaker.	

12	11	Chemical Reaction Equilibria Lab: Reaction rate constant. Purpose of the work is determination of the rate constant and activation energy of the reaction of decomposition the ethylacetate in the presence of hydrogen cations	
13	11	Chemical Reaction Equilibria	
14	12	Chemical Reaction Equilibria Lab: Activation energy. Purpose of the work is determination of the rate constant and activation energy of the reaction of decomposition the ethyl acetate in the presence of hydrogen cations. Used equipment is thermostat	
15	12	Chemical Reaction Equilibria	
16			Final

TEXTBOOK(S)

- 1. Howard DeVoe, Thermodynamics and Chemistry, Second Edition, Version, December 2015, 532 pages.
- 2. Dinesh Sharma, A Handbook Of Chemical Thermodynamics, Mittal Publications, 2005, 277 pages.

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	10%	
Laboratories	20%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload (hour)
Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	5	8
Self-study	14	3,5	49
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7

Final Examination	1	3	3
Preparation for final exam	1	24	24
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology" department

Course Unit Title	Fundamentals of transport in chemical and		
	biochemical engineering		

Course Unit Code	CHEM 3102
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Year of Study	3
Semester when the course unit is delivered	5
Course Coordinator	Nushaba Gamzayeva
Name of Lecturer (s)	Nushaba Gamzayeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	CHEM 2202 Chemical Engineering Thermodynamics I
Recommended Optional Program Components	-

The objective of this course it to provide a fundamental understanding of the convection and diffusion process in fluids, and how these determine the rates of transport of mass, heat and momentum. Chemical engineers and biochemical engineers head the research into and development of methods for large-scale production of drugs, inexpensive production of basic chemicals and fuels, and the economic production of advanced materials used in a wide range of areas – including communication, IT, health, and transport. Research into and development of methods for preventing and remedying environmental problems in relation to chemicals in the production, as well as research into and development of methods for sustainable chemical and biochemical energy conversion are also key fields of activity.

Objectives of the Course:

- The goals of this subject are to master the basic principles of mass transfer, by introducing the student to mass transfer from the point of view of transport phenomena followed by macroscopic separation processes. It is the objective of this course to introduce the student to both, a microscopic and macroscopic approach to mass transfer. In a first part, microscopic diffusional processes and the prediction and use of transport processes are discussed. In a second part, the course primarily deals with macroscopic separation processes, including absorption, distillation, in both step (tray) and continuous operation. The second part of the course will lead to equipment design.

Learning Outcomes

At the end of the course the student will be able to

1	Use the knowledge gained for its sufficient application in research and laboratory work.	1,3
2	Apply knowledge of math, science, engineering, and mass transfer principles to solve process and system problems, including steady and unsteady mass transport.	1,2,3
3	Design a system, component, equipment or process to meet desired mass transport needs.	2,3
4	Identifying, formulating, and solving engineering and mass transfer problems, including continuous and staged contact equipment, and vapor-liquid equilibrium	3
5	understand and implement professional and ethical standards.	1,3
Asse	essment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam	
Cou	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	3
3		
4	4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.	4
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	1
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.	3

9	•	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.				
10	Ability to we requiring eng laws, regulation	ility to work productively in multidisciplinary groups, especially in projects uiring engineering skills and to carry out all work in accordance with relevant vs, regulations, standards, methods and guidelines.				
CL: 0	Contribution Leve	el (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)				
Cou	irse Contents					
Wee	Veek Chapter Topics		Exam			
1	[1] Chap. I	Introduction				
2	[2] Chap. I	Dimensional analysis. Limitations of unit operations approach Seminar I - Dimensional analysis.				
3	[3] Chap. II	Diffusion due to random motion. Estimates of diffusion coefficient from kinetic theory and for turbulent flow.				
4	[3] Chap.III	Steady and unsteady diffusion in one dimension from a flat plate. Equivalence of heat, mass and momentum transport for unsteady one dimensional diffusion. Seminar II - Steady and unsteady diffusion in one dimension from a flat plate				
5	[1] Chap.IV	Steady and unsteady diffusion in one dimension from a flat plate. Equivalence of heat, mass and momentum transport for unsteady one dimensional diffusion.				
6	[2] Chap.III	Steady and unsteady transfer to a cylinder - balances in cylindrical co- ordinates. Seminar III - Steady and unsteady transfer to a cylinder - balances in cylindrical co-ordinates.				
7	[3] Chap.IV	Effect of pressure in fluid flow. Steady and unsteady flow in a pipe. Method of separation of variables.				
8			Midterm			
9	[3] Chap.V	Free surface flows down an inclined plane. Combination of convection, diffusion. Seminar IV - Free surface flows down an inclined plane.				
10	[1] Chap.V	Derivation of balance laws for stationary control volumes as partial differential equations for heat, mass and momentum transfer.				
11	[2] Chap V	Balances in cylindrical and spherical coordinates				

		Seminar V - Balances in cylindrical and spherical coordinates	
12	[3] Chap. IV	Diffusion dominated transport in three dimensions. Fourier's law, Fick's law as partial differential equations.	
13	[3] Chap.I	Solution of temperature field in a cube using spherical harmonic expansions. Seminar VI - Solution of temperature field in a cube using spherical harmonic expansions.	
14	[2] Chap.III	Spherical harmonics. Equivalent point charge representations.	
15	[1] Chap.VI	Thermal conductivity of a composite Seminar VII - Thermal conductivity of a composite	
16			Final

Recommended Sources TEXTBOOK(S)

1. Bird, Stewart and Lightfoot (BSL), Transport Phenomena, Wiley International, 1960.

2. L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heineman, 1992.

3. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU Guidelines for Undergraduate studies.

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload				
Activities	Number	Duration (hour)	Total Workload(hour)	
Course duration in class	14	3	42	
Presentation	1	7	7	
Self-study	14	4	56	
Tutorials	14	1	14	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	9	9	
Final Examination	1	3	3	
Preparation for final exam	1	19	20	
Total Workload	150			
Total Workload/30(h)			150/30	
ECTS Credit of the Course			5	

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

Course Unit Title	Chemical Engineering Reactor Design
Course Unit Code	ENG3101
Type of Course Unit	Compulsory

	vel of Course Unit	3 rd year CHEN program			
Na	tional Credits	-			
Nu	mber of ECTS Credits Allocated	5			
Theoretical (hour/week) 2					
Practice (hour/week) 1					
La	boratory (hour/week)	-			
Year of Study 3					
Se	mester when the course unit is delivered	5	5		
Co	urse Coordinator	Professor Baghiyev Vagif Lachin			
Na	me of Lecturer (s)	Professor Baghiyev Vagif Lachin			
Na	me of Assistant (s)	-			
Me	ode of Delivery	Face to Face, seminar			
La	nguage of Instruction	English			
Pr	erequisites	COMP 2201 Numerical comput	ing in chemical an		
		biochemical engineering			
Recommended Optional Program Components					
Cou	rse description:				
	rse description: v patterns. Non-ideal flow. Dispersion model. T				
Flov	•				
Flov Obj To _I	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac	anks-in-series mode tion engineering with emphases on the ap			
Flov Obj To _I kine	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance	anks-in-series mode tion engineering with emphases on the ap			
Flov Obj To _I kine cher	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac	anks-in-series mode tion engineering with emphases on the ap			
Flow Obj To p kine cher Lea	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors.	anks-in-series mode tion engineering with emphases on the ap			
Flow Obj To p kine cher Lea	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors. rning Outcomes	anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig	n and performance o		
Flow Obj To p kine cher Lea At tl	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors. rning Outcomes ne end of the course the student will be able to Recognize flow patterns, contacting, and non	anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig	Assessment 1,2,3		
Flov Obj To p kine cher Lea At tl	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors. rning Outcomes he end of the course the student will be able to	anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig	Assessment		
Flow Obj To p kine cher Lea At tl	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors. rning Outcomes ne end of the course the student will be able to Recognize flow patterns, contacting, and non	anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig	Assessment 1,2,3		
Flow Obj To p kine cher Lea At tl 1 2	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors. rning Outcomes the end of the course the student will be able to Recognize flow patterns, contacting, and non Recognize basics of non-ideal flow	anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig	Assessment 1,2,3 1,2,3		
Flov Obj To I kine cher Lea At tl 1 2 3	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reac tics, thermodynamics, mass and energy balance nical reactors. rning Outcomes the end of the course the student will be able to Recognize flow patterns, contacting, and non Recognize basics of non-ideal flow Apply compartment models.	anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig	Assessment 1,2,3 1,2,3 1,2,3		
Flow Obj To p kine cher Lea At th 1 2 3 4	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reactives, thermodynamics, mass and energy balance inical reactors. rning Outcomes ne end of the course the student will be able to Recognize flow patterns, contacting, and non Recognize basics of non-ideal flow Apply compartment models. Apply the dispersion model.	'anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig -ideal flow.	Assessment 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3		
Flov Obj To p kine cher Lea At tl 1 2 3 4 5	v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reactives, thermodynamics, mass and energy balance inical reactors. rning Outcomes ne end of the course the student will be able to Recognize flow patterns, contacting, and non Recognize basics of non-ideal flow Apply compartment models. Apply the dispersion model. Apply the tanks-in-series model.	'anks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desig -ideal flow.	Assessment 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3		
Flow Obj To p kine cher Lea At tl 1 2 3 4 5 6 7	 v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reactives, thermodynamics, mass and energy balance inical reactors. rning Outcomes ne end of the course the student will be able to Recognize flow patterns, contacting, and non Recognize basics of non-ideal flow Apply compartment models. Apply the dispersion model. Apply the tanks-in-series model. Apply the convection model for laminar flow 	ranks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desigideal flow. 7. regation and RTD.	Assessment 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3		
Flov Obj To p kine cher Lea At th 1 2 3 4 5 6 7 Ass	 v patterns. Non-ideal flow. Dispersion model. T ectives of the Course: provide a basic understanding of chemical reactives, thermodynamics, mass and energy balance inical reactors. rning Outcomes ne end of the course the student will be able to Recognize flow patterns, contacting, and non Recognize basics of non-ideal flow Apply compartment models. Apply the dispersion model. Apply the tanks-in-series model. Apply the convection model for laminar flow Have knowledge on earliness of mixing, segret 	ranks-in-series mode tion engineering with emphases on the ap ces, and transport phenomena to the desigideal flow. 7. regation and RTD.	n and performance of Assessment 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3		

Ability to solve complex issues and tasks by using the principles of mathematics, physics,

5

1

chemistry and chemical engineering.

~						
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.Ability to use the basics of mathematics, algorithmic principles and methods of computer					
3	Ability to use engineering in data using stat	4				
4	Ability to use in engineering chemical engin	2				
5	chemical engineering principles at designing of these processes. Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.					
6	•	gn systems, components, units and processes that meet the requirements, taking atural limitations such as economics, ecology, security and social aspects.	3			
7	Ability to use foreign source	the language skills to exchange and obtain some knowledge gained from the s.	1			
8	critically evalu	lyze the problem, to identify the basic requirements, to justify the idea and nate the results and to compare them.	3			
9	•	erstand professional, ethical, legal and security issues and the responsibilities for engineering.	2			
10	engineering sk	rk productively in multidisciplinary groups, especially in projects requiring cills and to carry out all work in accordance with relevant laws, regulations, hods and guidelines.	3			
CL: C	Contribution Lev	vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	1			
Cour	se Contents					
Wee	ek Chapter	Topics	Exam			
1	4	Introduction to chemical engineering reactor design.				
2						
	2	Stoichiometry. Limiting reactant. Constant volume systems. Variable volume systems				
3	2 2,9	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium.				
3		volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction				
4	2,9 3 5	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique.				
4	2,9	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral				
4	2,9 3 5	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique.	Midterm			
4 5 6	2,9 3 5	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique.	Midterm			
4 5 6 7	2,9 3 5 6	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique. General design equation for any reactor	Midterm			
4 5 6 7 8	2,9 3 5 6 7 9	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique. General design equation for any reactor Plug flow reactors (PFR) design equation. PFR in series. PFR in parallel. Continuous stirred tank reactors (CSTR). CSTR design equation. CSTR in	Midterm			
4 5 6 7 8 9	2,9 3 5 6 7 9 6	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique. General design equation for any reactor Plug flow reactors (PFR) design equation. PFR in series. PFR in parallel. Continuous stirred tank reactors (CSTR). CSTR design equation. CSTR in series.	Midterm			
4 5 6 7 8 9 10	2,9 3 5 6 7 9 6 8	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique. General design equation for any reactor Plug flow reactors (PFR) design equation. PFR in series. PFR in parallel. Continuous stirred tank reactors (CSTR). CSTR design equation. CSTR in series. Autocatalytic Reactions	Midterm			
4 5 6 7 8 9 10 11	2,9 3 5 6 7 9 6 8 6,7	volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique. General design equation for any reactor Plug flow reactors (PFR) design equation. PFR in series. PFR in parallel. Continuous stirred tank reactors (CSTR). CSTR design equation. CSTR in series. Autocatalytic Reactions Multiple Reactions	Midterm			
4 5 6 7 8 9 10 11 12	2,9 3 5 6 7 9 6 8 6,7 11	 volume systems Chemical kinetics. Chemical reaction types. Effect of temperature on reaction rate. Chemical Equilibrium. Batch Reactors. Types of reaction. Types of reactor. Order of reaction. Techniques for determination of orders of reaction. Integral technique. Differential technique. General design equation for any reactor Plug flow reactors (PFR) design equation. PFR in series. PFR in parallel. Continuous stirred tank reactors (CSTR). CSTR design equation. CSTR in series. Autocatalytic Reactions Multiple Reactions Design equations. Rate equations for simple, parallel and series reactions. 	Midterm			

					Final exam		
Recommended Sources							
TEXTBOOK(S)							
1. O. Levenspiel, Chemical React	-	-	•				
 A.R. Cooper and G.V. Jeffreys, Chemical Kinetics and Reactor Design, Oliver and Boyd1971. Mark E. Davis, Robert J. Davis, Fundal11entals of Chel11ical Reaction Engineering, McGraw Hill,2002, 368 							
pages	, i undul i tonu			incomig, me or	aw 11111,2002, 500		
Assessment							
Attendance	0%	At least 75%	class attendand	ce is compulsor	у		
Presentation	20%						
Quiz	10%						
Seminars	0%						
Midterm Exam	20%	Written Exa	m				
Final Exam	50%	Written-Ora	l Exam				
Total	100%						
Assessment Criteria							
Final grades are determined accor	ding to the Ac	ademic Regula	tions of ASOIU	for Undergradu	ate Studies		
Course Policies							
• Attendance of the course	is mandatory.						
• Late assignments will no	t be accepted u	unless an agree	ment is reached	with the lecture	er.		
• Students cannot use calcu	ulators during	the exam.					
• Cheating and plagiarism	will not be tol	erated. Cheatin	• Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State				
Oil and Industrial Univer	rsity General S	1 1 B 1			5 the Azerbaijan State		
		Student Discipli	ne Regulations		f the Azerbarjan State		
ECTS allocated based on Stude	nt Workload	Student Discipli	ne Regulations				
		student Discipli		Duration	Total		
ECTS allocated based on Studen		student Discipli	ne Regulations	Duration (hour)			
		student Discipli			Total		
Activiti			Number	(hour)	Total Workload(hour)		
Activiti Course duration in class		student Discipli	Number 14	(hour) 3	Total Workload(hour) 42		
Activiti Course duration in class Presentation			Number 14 1	(hour) 3 10	Total Workload(hour) 42 10		
Activiti Course duration in class Presentation Tutorials			Number 14 1 14	(hour) 3 10 1	Total Workload(hour) 42 10 14		
Activiti Course duration in class Presentation Tutorials Self-study			Number 14 1 14 14 14 14	(hour) 3 10 1 3,5	Total Workload(hour) 42 10 14 49		
Activiti Course duration in class Presentation Tutorials Self-study Midterm Examination			Number 14 1 14 14 14 14 14 14 14 14	(hour) 3 10 1 3,5 3	Total Workload(hour) 42 10 14 49 3		
Activiti Course duration in class Presentation Tutorials Self-study Midterm Examination Preparation for midterm exam			Number 14 1 14 14 14 14 14 14 14 1 1 1 1	(hour) 3 10 1 3,5 3 10	Total Workload(hour) 42 10 14 49 3 10		
Activiti Course duration in class Presentation Tutorials Self-study Midterm Examination Preparation for midterm exam Final Examination			Number 14 1 14 14 14 14 14 14 1 1 1 1 1 1 1 1	(hour) 3 10 1 3,5 3 10 3 10 3	Total Workload(hour) 42 10 14 49 3 10 3		
Activiti Course duration in class Presentation Tutorials Self-study Midterm Examination Preparation for midterm exam Final Examination Preparation for final exam			Number 14 1 14 14 14 14 14 14 1 1 1 1 1 1 1 1	(hour) 3 10 1 3,5 3 10 3 10 3	Total Workload(hour) 42 10 14 49 3 10 3 10 3 20		

Chemical engineering (CHEN) bachelor program, "Industrial economy and management" department

Course Unit Title	Principles of Microeconomics and Macroeconomics

Course Unit Code	ECON 3101
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	3
Semester when the course unit is delivered	5
Course Coordinator	Samira K. Mammadova
Name of Lecturer (s)	Samira K. Mammadova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

Introductory course that provides a basic understanding of microeconomic principles. Analyzes the economic factors influencing decisions made at the individual level, after evaluating resources, costs, and tradeoffs. Macroeconomics course is an exploration of the factors that impact the overall performance of economies. The course focuses on public policies helping and hindering the achievement of intended outcomes, such as reducing unemployment or increasing trade.

Objectives of the Course:

Students should identify how individual economic agents make rational choices given scarce resources, and explain how to optimize the use of resources at hand. Students should be able to use all accumulated knowledge for an understanding of key macroeconomic concerns, including national income accounting, saving and investment, and market forces.

Lear	Learning Outcomes:				
At th	At the end of the course the student will be able to Assessment				
1	1 analyze and apply the mechanics of demand and supply for individuals, firms, and the 2, 3 market; 2				
2	identify the characteristics of various market structures, namely, perfectly competitive markets, non-competitive markets, and imperfectly competitive markets, and compare and contrast their operations;	2, 3			
3	describe the determinants of total output and the ways to measure nominal Gross Domestic Product (GDP) as well as real GDP;	1, 2, 3			

4	describe and differe	entions among full approximant and uncompleximent, the three forms of	1.2
4		entiate among full employment and unemployment, the three forms of	1, 2
	unemployment, and	I the two forms of inflation;	
5	analyze a governme	ent's roles in the economy; evaluate how a government uses its fiscal	1, 2
	policy and moneta	ry policy to influence key variables in order to achieve economic	
	growth, price stabil	ity, full employment, and other goals.	
Asses		inal Exam, 2. Presentation, 3. Midterms	
Cour	se's Contribution to) Program	
			CI
			CL
1	-	e complex issues and tasks by using the principles of mathematics, physics, chemical engineering.	3
2	Ability to exe	cute, coordinate, implement, substantiate laboratory processes while	
	carrying out t	he experiments and to obtain and extract chemical compounds using	1
	standard metho	ods and syntheses.	
3	-	he basics of mathematics, algorithmic principles and methods of computer	
		the modeling, to design of chemical engineering systems, analyze and	4
	_	sing statistical methods.	
4		the techniques, materials, skills and modern engineering tools which are	
	-	ering and to carry out industrial and chemical processes, control them and	1
		cal engineering principles at designing of these processes.	
5	•	se and use existing technologies, materials while undertaking project tasks	1
	-	se issues n chemical engineering and ability to eliminate malfunctions that	1
		ndustrial and chemical processes or in laboratory equipment.	
6	•	gn systems, components, units and processes that meet the requirements,	4
	-	count natural limitations such as economics, ecology, security and social	4
7	aspects.	1. 1	
7		the language skills to exchange and obtain some knowledge gained from	1
0	the foreign sou		
8		yze the problem, to identify the basic requirements, to justify the idea and ate the results and to compare them.	4
9		derstand professional, ethical, legal and security issues and the	
9		s characteristic for engineering.	3
10	-	c productively in multidisciplinary groups, especially in projects requiring	
10		ills and to carry out all work in accordance with relevant laws, regulations,	
		hods and guidelines.	3
	stundurus, met		
CL: C	Contribution Level (1	: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	1
	se Contents		
			T
Weel	k Chapter	Topics	Exam
		Foundation of Microeconomics.	
1	[1,2]	• Theories, Principles, and Models	
1	[1,2]	Individual's and Society's Economizing Problem	
		Production Possibilities and The Circular Flow Models	
		Characteristics of the Market System	
2	[2]	Competitive markets: Demand and Supply.	
Z	pp. 31-35[2]	• Demand, Law of Demand, Determinants of Demand, Changes in Demand	
	PP. 51-55[2]	in Demund	

		 Supply, Law of Supply, Determinants of Supply, Changes in Supply Market Equilibrium, Rationing Function of Prices, Efficient Allocation, Changes in Supply, Demand, and Equilibrium Seminar: Demand and Supply analysis; Determining Market equilibrium; Determining Efficient allocation 	
3	[2] pp. 220, 223, 224[2]	 Elasticity Price Elasticity of Demand, The Price-Elasticity Coefficient and Price Elasticity and the Total-Revenue Curve, Determinants of Price Elasticity of Demand Price Elasticity of Supply: The Market Period, Price Elasticity of Supply: The Short Run, Price Elasticity of Supply: The Long Run Cross Elasticity and Income Elasticity of Demand Seminar: Determining Price Elasticity of Demand, Cross and Income Elasticity; Deriving Market, Short Run and Log Run periods graphs of Supply Elasticity. 	
4	[2] pp.231-234[2]	 Consumer Behavior Law of Diminishing Marginal Utility, Total Utility and Marginal Utility Theory of Consumer Behavior, Consumer Choice and the Budget Constraint, Utility-Maximizing Rule Utility Maximization and the Demand Curve, Income and Substitution Effects Seminar: Calculating set of product combination maximizing utility; Deriving Budget Line graphs 	
5	[2] pp.248-252[2]	 The Costs of Production. Explicit and Implicit Costs, Accounting Profit and Normal Profit, Economic Profit, Law of Diminishing Returns Short-Run Production Costs: Fixed, Variable, and Total Costs. Per-Unit, or Average, Costs Marginal Cost Long-Run Production Costs, Firm Size and Costs, The Long- Run Cost Curve, Economies and Diseconomies of Scale, Minimum Efficient Scale and Industry Structure Seminar: Reviewing TC,TFC,TVC,ATC,AFC,AVC and MC; Graphing Short and Long Run ATC. 	
6	[2] pp.260-262[2]	 Market Structure: Competitive and Non-competitive Markets Four Market Models; Pure Competition: Characteristics and Occurrence, Profit-Maximizing Case, Loss-Minimizing Case, Shutdown Case Profit Maximization in the Short Run: Total-Revenue– Total- Cost Approach and Marginal-Revenue–Marginal-Cost Approach; Barriers to Entry, Economies of Scale / Legal Barriers to Entry: Patents and Licenses / Ownership or Control of Essential Resources / Pricing and Other Strategic Barriers to Entry Monopolistic Competition Relatively Large Number of Sellers Differentiated Products, Easy Entry and Exit, Advertising, Monopolistically Competitive Industries Oligopoly: A Few Large Producers, Homogeneous or Differentiated Products, Control over Price, but Mutual Interdependence, Entry Barriers, Mergers, Oligopolistic Industries Consider This: Creative Strategic Behavior 	

			1
		Seminar: Calculating Maximum Profit base to: TR-TC, MR-MC	
		approaches; Graphical defining of Economic Profit, Loss, Shutdown conditions.	
		The Demand for Resources.	
		Marginal Productivity Theory of Resource Demand, Marginal	
		Revenue Product, Rule for Employing Resources, Market	
	[2]	Demand for a Resource	
7	[-]	 Determinants of Resource Demand, Changes in Productivity / 	
		Changes in the Prices of Other Resources	
		Optimal Combination of Resources, The Least-Cost Rule,	
		The Profit-Maximizing Rule	
8			Midterm
		Foundation of Macroeconomics.	
		Performance and policy	
9	[2]	Modern economic growth	
-		• Uncertainly, Expectations and Shocks	
		Categorizing Macroeconomic Models Using Price Stickiness	
		Macroeconomics: Goals, Measures, and Challenges	
	[2]	Gross Domestic Product	
10		The Expenditures Approach	
10		The Income Approach	
	pp. 73 [2]	Nominal GDP versus Real GDP	
		Seminar: Determining Ig, Xn, GDP, Corporate profits, NDP, NI and PI	
		Unemployment and Inflation	
	[2]	• Unemployment	
11	[2]	Meaning, Measurement, Types, and Redistribution Effects of	
	pp. 86 [2]	Inflation	
		Seminar: Determining actual and potential GDP and GDP gap.	
		Calculation nominal and real income and rate of inflation.	
	[2]	 Basic Macroeconomic Relationships The Income-Consumption and Income-Saving Relationships 	
	[2]	 The Interest-Rate–Investment Relationship 	
12	pp. 95-96 [2]	 The Interest-Rate-Investment Relationship The Multiplier Effect 	
	pp. 55 56 [2]	Seminar: Calculating MPC, MPS, APC, APS; Deriving Consumption	
		and Saving graphs.	
		Aggregate Economic Activities and Fluctuations	
	[2]	Consumption, Saving and Investment	
13		• Changes in Equilibrium GDP and the Multiplier	
		Open economy condition	
		Equilibrium versus Full-Employment GDP	
		Fiscal Policy	
14	[2]	Expansionary Fiscal Policy	
11		Contractionary Fiscal Policy	
		Evaluating Fiscal Policy	
		Monetary Policy	
15	[2]	• The Functions of Money	
15		• The Components of the Money Supply	
		Interest rates Table of Manatam Deliver	
		 Tools of Monetary Policy Monetary Policy Real GDB, and the Bride Level 	
		Monetary Policy, Real GDP, and the Price Level	Final
16			1 111/01

Recommended Sources: TEXTBOOK(S)

1. McConnell, Campbell R. Brue, Stanley L. Flynn, Sean, economics: principles, problems, and policies, twentyfirst edition, McGraw-Hill Higher Education, 2018

2. William B. Walstad, Robert C. Bingham Study Guide to Accompany Economics, McGraw-Hill, 2002

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU for undergraduate studies

Course Policies

Attendance of the course is mandatory. •

- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload		1	1
Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	9	9
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	9	9
Final Examination	1	3	3
Preparation for final exam	1	18	18
Self-study	14	4	56
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

Course Unit Title	Chemical Process Materials

Course Unit Code	CHEM 3103
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	3
Semester when the course unit is delivered	5
Course Coordinator	Leyla Z.Vezirova
Name of Lecturer (s)	Leyla Z. Vezirova
Name of Assistant (s)	-
Mode of Delivery	Face to Face.
Language of Instruction	English
Prerequisites	PHYS 1101 Engineering physics 1
Recommended Optional Programme Components	-

Seminar to highlight the classification, properties, selection, and processing of engineering materials that may includepolymers, electronic materials, biomaterials, and nanomaterials. Students will research related topics for presentationand discussion. The student will understand how materials affect their lives and make living easier through technological transforming processes, and the selection process involved with applying a material to an application. Students will learn safe practices in using various tools and machines that touch a wide range of materials.

Objectives of the Course:

This material processing course is designed to give the leaner a wide overview of materials and processes used to transform them. This course focuses on the classifying, properties, and processes of materials and the selection of those materials to be used in applications. Learners should be concerned with processes and materials used in metals, woods, plastics, ceramics, and composites. This course demonstrates unchanging processes used on different materials, as well as specific processes used on certain materials. This course also offers selection process of the use of materials in different applications. Special attention is given to safety in the work shop environment. Suggested teaching time is one semester on instruction. Major activities include reports, analysis of materials, hands on projects, minor hands on projects, and safe techniques used to process materials.

LearningOutcomes

At the end of the course the student will be able to

1	Identify the universal systems model as it relates to material processing	1,3
1	technologies.	1,5
2	Differentiate the methods used by humans to procure raw materials from the earth to be later made into production materials.	1,2,3
3	Analyze the various materials used in production and identify the differences and similarities of each.	2,3
4	Explain the different properties that materials may exhibit and the importance of such differences.	1,2,3
5	Select a metal and match it to its appropriate classification in the metal family	1,3
	Show the different natural and synthetic polymers.	
Ass	essment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exam	
Cou	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	3
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	4
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	5
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	4
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.	4
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	1
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.	5
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.	3
10	Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines.	2
	Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cou	rseContents	

Week	Chapter	Topics	Exam
1	[2] ch. 1, p.1- 49	Introduction to Engineering materials . Science of materials behavior . Raw Material Procurement Harvesting/refining • Plants • Animals Extracting/refining • Land • Air Water	
2	[3] ch. 1, p.1- 23	Manufacturing Management Materials selection Production Materials Seminar: Introduction to Engineering materials . Manufacturing Management , Materials selection Production Materials .	
3	[3] ch. 2, p.23-49	Material and Design Considerations in Manufacturing Material classifications	
4	[2] ch. 8, p.341-380	Ceramics and Glasses Production Materials Applications	
5	[1]ch.C, p. 219-277	Polymers • Historical development • Sources of raw materials • Material classifications • Thermoplastics • Thermosets Applications • Traditional Innovative Comparative characteristics • Physical • Mechanical • Thermal • Electrical • Optics	

		Environmental	
6	[1]ch.C, p. 277-290	 Forest products Historical development Sources of raw materials Material classifications Solid wood products Wood composition Chemically derived Tree extractive products 	
		Seminar: Polymers	Midterm
8	[1]ch.C, p. 277-290	Forest products Applications • Traditional • Innovative Comparative characteristics • Physical • Mechanical • Chemical • Thermal • Electrical • Acoustical • Optics Environmental	
9	[2] ch. 4, p.97-220	Metals • Historical development • Sources of raw materials • Material classifications • Ferrous • Nonferrous Applications • Traditional • Innovative Comparative characteristics • Physical • Mechanical • Chemical • Thermal • Electrical • Acoustical • Optics • Environmental	
10	[2] ch.9, p.349-411	Metals Composite materials • Historical development • Sources of raw materials • Material classification of components • Resin matrix • Fiber Reinforcements Applications	

-		
		• Traditional
		• Innovative
		Comparative characteristics
		Physical
		Mechanical
		Chemical
		• Thermal
		• Electrical
		Acoustical
		Optics
		Environmental
		Magnetic materials
		Other production materials
		• Plant and animal derivatives
		Industrial chemicals
	[2]ah 10 n	Pharmaceuticals
11	[2]ch.10, p. 411-447	Electronic related
	411-447	Textiles
		• Textiles
		Seminar: Composite materials, Magnetic materials
		Manufacturing processes
		Separating Shapping
		• Shearing
		• Applications/examples
		• Techniques
		Comparative effectiveness
	503 1 0	Chip removal
12	[3] ch.3, p.117-155	Applications/examples
		• Techniques
		Comparative effectiveness
		Non-traditional
		Applications/examples
		• Techniques
		Comparative effectiveness
		· ·
		Processing Materials
		Combining Mechanical fastening
		Applications/examples Techniques
		• Techniques
		Comparative effectiveness
		Bonding
		Applications/examples
	[3] ch.3, p.117-155	• Techniques
13		Comparative effectiveness
		Mixing
		Applications/examples
		Techniques
		Comparative effectiveness
		Coating
		• Applications/examples
		Techniques
		Comparative effectiveness

		Seminar: M	lanufacturing processes, Processing Materials	
14	[3] ch.3, p.117-155	 Tec Cor Compressin App Tec Cor Conditionin App Tec Cor Conditionin App Tec Cor Impacts of M Personal Lifestyle Health a Career i Technol Economic Individu Organiz Societal Global i Resource Standard Environme Value ju 	Iding plications/examples chniques mparative effectiveness g/stretching plications/examples chniques mparative effectiveness ng plications/examples chniques mparative effectiveness Material Processing e change and safety implications logical dependency tal profit/loss cational profit/loss interdependence ee management d of living ental udgments jues of reclaiming/disposing	
15	[2] ch.11, p.447-495	• • •	Fabrication of semiconductor nanowires Fabrication of metal nanowires Electrochemical fabrication of metal nanowires Magnetic materials and devices Seminar: Nanomaterials	
16			Semmar: Nanomateriais	Final Exam
Recom	mended Sources BOOK(S)	1		
1 2 3	. Michael F. A Butterworth-	shby, Robert V Heinemann;20	Materials Volume 2, Butterworth-Heinemann, 2008 W. Messler, Rajiv Asthan Engineering materials and 113 manufacturing processes and materials. Marcel Dek	
5				
	nent			
Assessn			0% At least 75% class attendance is compulse	ory
Assessn Attendar Presenta	nce		0% At least 75% class attendance is compulse 20%	Dry

Seminars	0%	
MidtermExam	20%	WrittenExam
FinalExam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry

University for undergraduate studies

CoursePolicies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated.
- Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload			
Activities	Number	Duration (hour)	TotalWorkload(hour)
Coursedurationinclass	14	3	42
Presentation	1	9	9
Self-study	14	1	14
Tutorials	14	1	14
MidtermExamination	1	3	3
Preparation for midterm exam	1	8	8
Final Examination	1	3	3
Preparation for final exam	1	20	20
TotalWorkload	150		
TotalWorkload/30(h)	150/30		
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology"

Course Unit Title	Separation in chemical and biochemical engineering
Course Unit Code	ENG 3202
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	6
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	-

Year of Study	3
Semester when the course unit is delivered	6
Course Coordinator	Aynura Aliyeva
Name of Lecturer (s)	Aynura Aliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	CHEM 3101Chemical Engineering Thermodynamics-2
Recommended Optional Program Components	-

This course serves as an introduction to the overview to separation processes, fundamental principles of separation operations for the recovery of products from biological and chemical processes, distillation, distillation methods, novel separation methods, membrane separation processes, chromatography, adsorption, absorption, extraction, liquid-liquid extraction and other processes. Students will understand the principles of mass transfer and the characteristics of staged processes. A successful outcome of this course will result in the students ability to design equilibrium staged chemical processes.

Objectives of the Course:

Although separations have been an integral part of chemical engineering education for many years, the recent emergence of industries such as biotechnology and nanotechnology have significantly increased the demand for chemical engineers well schooled in the fundamentals of separation processes. The objective of this senior course is to familiarize the chemical engineering students with the fundamental principles of Separation Processes. We will examine both equilibrium controlled separation processes as well as separation processes that involve both mass transport and equilibrium considerations. In order to probe the key concepts in depth, the course will focus primarily on distillation, adsorption, extraction and membranes. However throughout the course, a wide variety of separation processes will be brought to the student's attention to broaden the discussion. In particular, examples from biotechnology will be used to illustrate key concepts. In addition to teaching the fundamental principles involved in these unit operations, the course will also introduce the students to specific subtleties associated with a wide variety of separation processes both old and new. In class problems will be used throughout the course to deepen the students' understanding of the material. Computer instruction will be employed throughout the course to illustrate important characteristics of these separation systems.

Learning Outcomes

Licur	ing outcomes	
At the	e end of the course the student will be able to	Assessment
1	apply knowledge of this course in research and laboratory work.	1,2
2	explain the role of separation operations in the chemical and biochemical industries.	1,2,3
3	fully understand key concepts of separation processes	1,2,3
4	explain the major differences between chemical and biochemical separation processes.	1,2,3
5	identify, formulate, and solve complex engineering problems	1,2
6	understand the concept of sequencing of separation operations, particularly distillation	1,2
7	explain main principles of separation processes	1,2,3
8	understand the basic principles of various membrane processes	1,2
Asse	ssment Methods: 1. Final Exam 2. Midterm Exam 3. Presentation	
Cour	se's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4

2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying 3 out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3					
3	engineering in	the basics of mathematics, algorithmic principles and methods of computer the modeling, to design of chemical engineering systems, analyze and using statistical methods.	4			
4	in engineering	the techniques, materials, skills and modern engineering tools which are used and to carry out industrial and chemical processes, control them and to apply neering principles at designing of these processes.	5			
5	solving these	ose and use existing technologies, materials while undertaking project tasks and issuesin chemical engineering and ability to eliminate malfunctions that may trial and chemical processes or in laboratory equipment.	4			
6		gn systems, components, units and processes that meet the requirements, count natural limitations such as economics, ecology, security and social	4			
7	Ability to use foreign source	the language skills to exchange and obtain some knowledge gained from the s.	2			
8	•	yze the problem, to identify the basic requirements, to justify the idea and nate the results and to compare them.	3			
9	•	erstand professional, ethical, legal and security issues and the responsibilities for engineering.	4			
10	engineering sk	rk productively in multidisciplinary groups, especially in projects requiring cills and to carry out all work in accordance with relevant laws, regulations, hods and guidelines.	4			
CL: C	Contribution Lev	vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)				
Cours	se Content					
Weel	k Chapter	Topics	Exam			
1						
	Book I. Chap. 1.	Separation processes. The role of separation operations in the chemical and biochemical industries. Industrial chemical processes. Basic separation techniques.				
2		The role of separation operations in the chemical and biochemical industries.				
2	Chap. 1. Book I.	The role of separation operations in the chemical and biochemical industries. Industrial chemical processes. Basic separation techniques. Separation processes Separation by phase addition. Separation by barriers. Separation by solid agents. Separation factor. Introduction to bioseparations. Bioprocess. Bioproducts. Bioseperation steps.				
	Chap. 1. Book I. Chap. 1. Book I	The role of separation operations in the chemical and biochemical industries. Industrial chemical processes. Basic separation techniques. Separation processes Separation by phase addition. Separation by barriers. Separation by solid agents. Separation factor. Introduction to bioseparations. Bioprocess. Bioproducts. Bioseperation steps. Seminar 1. Separation processes Thermodynamics of separation operations Thermodynamic laws. Energy, entropy, and availability balances around a				
3	Chap. 1. Book I. Chap. 1. Book I Chap.2	The role of separation operations in the chemical and biochemical industries. Industrial chemical processes. Basic separation techniques. Separation processes Separation by phase addition. Separation by barriers. Separation by solid agents. Separation factor. Introduction to bioseparations. Bioprocess. Bioproducts. Bioseperation steps. Seminar 1. Separation processes Thermodynamics of separation operations Thermodynamic laws. Energy, entropy, and availability balances around a separation process. Phase equilibria. Thermodynamics of separation operations Vapor-liquid equilibrium. Thermodynamic description of vapor–liquid equilibrium. Raoult's law. Fugacity, activity, fugacity and activity coefficient. K-values.				

		The differences among physical absorption, chemical absorption and	
		stripping. Equipment for vapour-liquid separations.	
		Seminar 3. Absorption process.	
	[2]	Distillation and stripping.	
7	[3].	Process distillation and stripping. Batch distillation. Boling point and	
	Chap.9	equilibrium diagrams. Theory of distillation. Continuous distillation.	
8			Midterm
		Flash distillation.	
0	[II]	Distillation. Basic method of flash distillation. Form and sources of	
9	Chap. 2	equilibrium data. Binary flash distillation.	
		Seminar 4. Distillation process.	
		Distillation of binary mixtures.	
10	[I]	Binary distillation. Equipment and design considerations. Design and	
	Chap. 7	analyses factors. McCabe-Thiele Method.	
		Extraction.	
	[3]. Chap. 10 Book I Chap. 8	Extraction principle. Extraction process.	
11		Liquid-liquid extraction.	
		Liquid-liquid extraction. Equipment for solvent extraction. Mixer-Settlers.	
		Seminar 5. Extraction. Liquid-liquid extraction.	
		Liquid-liquid extraction.	
12	[1]	Centrifugal extractors. General design considerations. Advantages and	
	Chap. 8	disadvantages of different extraction equipment. Extraction of bioproducts.	
		Membrane separations	
13	[1] Chap. 14	Membrane processes. Industrial membrane separation processes.	
10		Seminar 6. Membrane separations	
	Book I	Adsorption process.	
14	Chap. 14	Industrial application of sorption operations. Sorbents. Adsorbents.	
	1	Chromatography	
	[1]	Sorbents for chromatography. Types of chromatography.	
15	Chap.	Leaching and Washing	
	14,16	Leaching (liquid-solid extraction). Equipment for leaching.	
		Seminar 7. Adsorption process.	
16			Final

Recommended Sources

TEXTBOOK

- 1. Seader, J.D.; Henley, E.J. *Separation Process Principles*. Second Edition, John Wiley & Sons, New Jersey, 2006.
- 2. Philip C. Wankat Separation Process Engineering, Third Edition, Prentice Hall;2011
- 3. Uttam Ray Chaudri, Fundamentals of petroleum and petrochemical engineering, CRC Press, 2011

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial University for Undergraduate Studies

Course Policies

Attendance of the course is mandatory.

Late assignments will not be accepted unless an agreement is reached with the lecturer.

Students cannot use calculators during the exam.

Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	18	18
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	14	14
Final Examination	1	3	3
Preparation for final exam	1	30	30
Total Workload	180		
Total Workload/30(h)	180/30		
ECTS Credit of the Course			6

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology"

Course Unit Title	Chemical Engineering laboratory-1
Course Unit Code	LAB 3201
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5

Theoretical (hour/week)	1
Practice (hour/week)	-
Laboratory	2
Year of Study	3
Semester when the course unit is delivered	6
Course Coordinator	Hamzayeva Nushaba
Name of Lecturer (s)	Hamzayeva Nushaba
Name of Assistant (s)	
Mode of Delivery	Face to Face, Laboratory
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

A first introduction to the processes and apparatuses of chemical industry. A brief survey of the process and apparatuses of chemical industry, focusing on the classification of process and apparatuses, types of heat-exchangers, reactors, furnaces, material and thermal balances.

Objectives of the Course:

During orientation you can expect to:

- Learn more about your academic program
- Learn about why Chemical engineering lab. and how to be familiar with that since
- Schedule your first set of classes
- Meet faculty advisors, and current state students
- Interact with fellow incoming students
- Learn how to Ask Questions.

Learning Outcomes At the end of the course the student will be able to Assessment 1 Use the knowledge gained for its sufficient application in research and laboratory work. 1,3 2 Apply knowledge of math, science, engineering, and mass transfer principles to solve process and system problems, including steady and unsteady mass transport. 1,2,3

3	Design a system, component, equipment or process to meet desired mass transport needs.	2,3	
4	Identifying, formulating, and solving engineering and mass transfer problems, including continuous and staged contact equipment, and vapor- liquid equilibrium	3	
5	understand and implement professional and ethical standards.	1,3	
Ass	essment Methods: 1. Final Exam, 2. Presentation, 3 midterm exam		
Col	rse's Contribution to Program		
		CL	
1	Ability to solve complex issues and tasks by using the principles of mathematics physics, chemistry and chemical engineering.	, 4	
2	Ability to execute, coordinate, implement, substantiate laboratory processes whil carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.		
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.		
4	4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.		
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	e 4	
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.	4	
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	1	
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.		
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.		
10	Ability to work productively in multidisciplinary groups, especially in project requiring engineering skills and to carry out all work in accordance with relevan laws, regulations, standards, methods and guidelines.		
CL:	Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High	l)	
Cou	rse Contents		

Week	Chapter	Topics	Exam
1	Book I Chap. I	Hydrostatics. Differential equilibrium equation of Eyler Lab work: Safety rules	
2	Book II Chap. I	Lab work: Safety rules	
3	Book III Chap. II	Hydrodynamics. Motion regimes of flow Lab work: Reverse Osmosis The choice of procedure depends on the properties of the substances that are to be removed from the water. Mechanical procedures remove undissolved substances (solids). On the other hand, solutes can be removed with biological or physical/chemical methods.	
4	Book III Chap.III	Lab work: Reverse Osmosis The choice of procedure depends on the properties of the substances that are to be removed from the water. Mechanical procedures remove undissolved substances (solids). On the other hand, solutes can be removed with biological or physical/chemical methods.	
5	Book I Chap.IV	Heterogen systems and methods of its separation Lab work: Reverse Osmosis ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
6	Book II Chap.III	Lab work: Reverse Osmosis ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
7	Book III Chap.IV	Filtration processes. Filtrating apparatuses Lab work: Reverse Osmosis ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	

8			Midterm
9	Book III Chap.V	Separation under centrifugal force. Centrifuges cyclones and hydrocyclonis Lab work: Reverse Osmosis ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
10	Book I Chap.V	Lab work: Fluidised bed formation In fluidised beds, granular solid matter is held in suspension by a fluid flowing through it. As a result, the solid matter takes on the character of a liquid. This relates both to its fluid- mechanical and its thermodynamic properties. A fluidised bed is a layer of fine granular solid matter (mass) that is loosened by a fluid flowing through it to such an extent that the particles of solid matter are free to move within certain limits. The layer of solid material takes on similar properties to a fluid.	
11	Book II Chap V	Heat exchange processes. Heat transfer. Lab work: Fluidised bed formation In fluidised beds, granular solid matter is held in suspension by a fluid flowing through it. As a result, the solid matter takes on the character of a liquid. This relates both to its fluid- mechanical and its thermodynamic properties. A fluidised bed is a layer of fine granular solid matter (mass) that is loosened by a fluid flowing through it to such an extent that the particles of solid matter are free to move within certain limits. The layer of solid material takes on similar properties to a fluid.	
12	Book III Chap. IV	Lab work: Fluidised bed formation In fluidised beds, granular solid matter is held in suspension by a fluid flowing through it. As a result, the solid matter takes on the character of a liquid. This relates both to its fluid- mechanical and its thermodynamic properties. A fluidised bed is a layer of fine granular solid matter (mass) that is loosened by a fluid flowing through it to such an extent that the particles of solid matter are free to move within certain limits. The layer of solid material takes on similar properties to a fluid.	
13	Book III Chap.I	Types of tubular heaters. Classification of tubular furnaces. Lab work: Fluidised bed formation	

		In fluidised beds, granular solid matter is held in suspension by a fluid flowing through it. As a result, the solid matter takes on the character of a liquid. This relates both to its fluid- mechanical and its thermodynamic properties. A fluidised bed is a layer of fine granular solid matter (mass) that is loosened by a fluid flowing through it to such an extent that the particles of solid matter are free to move within certain limits. The layer of solid material takes on similar properties to a fluid.	
14	Book II Chap.III	Lab work: Revision for all lab works	
15	Book I Chap.VI	Types of tubular heaters. Classification of tubular furnaces. Lab work: Revision for all lab works	
16			Final

Recommended Sources TEXTBOOK(S)

- 1. Bird, Stewart and Lightfoot (BSL), Transport Phenomena, Wiley International, 1960.
- 2. L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heineman, 1992.
- 3. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967.

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Presentation	10%	
Laboratory	20%	
Midterm Exam	20%	Written exam
Final Exam	50%	Written-Oral exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU.

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workle	oad		
Activities	Number	Duration	Total
Acuvities	Number	(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	8	8
Tutorials	14	1,5	21
Self-study	14	3,5	49
Midterm Examination	1	3	3
Preparation for midterm exam	1	8	8
Final Examination	1	3	3
Preparation for final exam	1	19	19
Total Workload		1	150
Total Workload/30(h)	150/30		
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "General and applied mathematics" department

Course Unit Title	Applied Engineering Statistics
Course Unit Code	MATH 3201
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year of CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2

Practice (hour/week)	1
Year of Study	3
Semester when the course unit is delivered	6
Course Coordinator	Nigar Ismayilova
Name of Lecturer (s)	Nigar Ismayilova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	MATH 1201 Calculus for engineers II
Recommended Optional Programme Components	-

In this course the principles of Statistics and probability will be delivered with the emphasize on its application in science and will put effort on using modern programming languages in order to carry the investigation on data analyse.

Objectives of the Course:

Enabling students to master the principles of statistics and apply them to the problems of Chemical Engineering using computer.

Lear	ning Outcomes	
At th	e end of the course the student will be able to	Assessment
1	Have general understanding of statistics and probability and their application in different branches of science	3
2	Getting the Math and Computer skills to tackle the problems of statistics	2
3	Be capable of Data science and analyze related to the field of engineering and use modern technology in order to solve real life problem.	1
	ssment Methods: 1. Final Exam, 2. Independent works, 3.Midterm	
Cou		CL
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physic chemistry and chemical engineering.	s, 5
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carryin out the experiments and to obtain and extract chemical compounds using standard method and syntheses.	-
3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.		-

4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.					
5	Ability to choose and use existing technologies, materials while undertaking project tasks and					
	solving these issues in chemical engineering and ability to eliminate malfunctions that may					
	solving these issues in chemical engineering and ability to eliminate malfunctions that may 3 occur in industrial and chemical processes or in laboratory equipment 3					
6		ns, components, units and processes that meet the requirements, taking	1			
		nitations such as economics, ecology, security and social aspects.				
7	Ability to use the lang	uage skills to exchange and obtain some knowledge gained from the	1			
	foreign sources					
8		problem, to identify the basic requirements, to justify the idea and	2			
		results and to compare them.				
9	-	professional, ethical, legal and security issues and the responsibilities	2			
10	characteristic for engin					
10		actively in multidisciplinary groups, especially in projects requiring to carry out all work in accordance with relevant laws, regulations,	4			
			4			
	standards, methods and	-				
		Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)				
Cour	rse Contents					
Wee	k Chapter	Topics	Exam			
1	[1] Chapter one, p1-p25	Basic Concepts in Statistics, its importance in modern science and discussion of mathematical backgrounds and prerequisites:				
2	[1] p27-p35	Basic Concepts from Probability Theory, set theory and mathematical theorems on the subjects:Seminar 1: Sets and lists in Python, Mathematical tools for Gaussian Distribution, Simple examples on Random Events				
3	[1] Chapter one, p27-p35 and [1] Chapter 0 (p1- p39)	Basic Concepts from Probability Theory (continued), Embedding probability in computer (python) and discussion on modelling				
4	[1] Chapter one , p45-p55	Additional Topics in Probability, Random variables and Introduction to Distributions, Seminar 2: Die example, Simulation of Die and Coin in Computer, Averaging and Probability of Union and Intersection				
5	[3] Chapter 6	Additional Topics in Probability (continued), More on Distributions and examples from real life				

6	[3] Chapter one, p107-p137	 Sampling Distributions, Discreet vs. Continuous Distribution, Discussing Bernoulli Distribution, Poisson Distribution, Normal, Lognormal and Multinomial distributions Seminar 3: Different Distributions in Experiments, Averaging in Continuous Distributions, Math tools for Computing Gaussian Integrals 	
7			Midterm
8	[3] Chapter one, p142-p155	Continuous Distribution and Discussing Uniform Distributions and Gamma Distributions: Seminar 4: Factorials, Newtonian Binomial, Permutations	
9	[1] Chapter one , p27-p40	and Combinatorics Point Estimation , Interval Estimation and Bayesian Estimation, Discussion of Conditional Probability and Bayes theorem	
10	[2,5]	Design of Experiment, Modelling with computers and algorithms for counting, simulations using python Seminar 5: Integration by Parts for Gamma Functions, Relations between Gamma and Beta Functions, Relations to Factorials	
11	[2].	Additional topics on Modelling and simulation in python, libraries and math tools. Intro to Linear Regression	
12	Chapter 0 of Reference No 2, p371-p378	Linear Regression in details, Fitting to quadratics and coping with approximate data. Relation to Linear Algebra Seminar 6: Regression and Interpolation, Examples from Polynomial Calculation, More on Combinatorics, Using Computers on Counting	
13	Chapter 4 and 5 of Reference No 4 (p35-p50) Selected parts from Reference No 2	Miscellaneous topics on Statistics(1) including variance and its analysing, Additional computer tools	
14	From General resources (including Reference no 5)	 Miscellaneous topics on Statistics (2) including Mass Function, PDF (Probability Density Function and etc.) Seminar 7: Examples from Chemistry and Physics, Handling Results with Big Sampling Space, Regularizations, Intro to Data Mining 	

15	Chapter 14 of Reference No 4 (p155-p163)	Perspectives and issues on statistical math and its applications. Relation to other fields of science	
16			Final

Recommended Sources

TEXTBOOK(S)

- 1. Prasanna Sahoo.Probability and Mathematical statistics. University of Louisville , 2013
- 2. Philip Klein, Coding the Matrix, Newtonian Press, 2013
- 3. R.Feynman, R.Leighton, M.Sands, Feynman Lectures on Physics Vol.1
- 4. Deborah Rumsey. Statistics Essentials for Dummies. Wiely Publishing edition, 2010.
- 5. Dimitri Nesteruk, Statistics Foundations, Understanding Probability and Distributions, Pluralsight, 2000

Assessment

Attendance	0%	At least 75% class attendance is compulsory		
Independent works	20%			
Quiz	10%			
Seminars (Quizzes)	0%			
Midterm Exam	20%	Written Exam		
Final Exam	50%	Written-Oral Exam		
Total	100%			

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU Guidelines for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload				
Activities	Number	Duration	Total	
Activities		(hour)	Workload(hour)	

Course duration in class	14	3	42
Independent works	10	1	10
Self-study	14	3,5	49
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	20	20
Total Workload			150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Technology of organic substances and high molecular compounds" department

Course Unit Title	Chemical Process Design I
Course Unit Code	CHEM 3201
Type of Course Unit	Compulsory
Level of Course Unit	3 nd year CHEN program

National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	3
Semester when the course unit is delivered	6
Course Coordinator	Narmina Guliyeva
Name of Lecturer (s)	Narmina Guliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	ENG 3101 Chemical Engineering Reactor Design
Recommended Optional Programme	-
Components	
Course description:	
Chemical Engineering Design is a complete course te	xt for students of chemical engineering. Written for the Senior
Design Course, and also suitable for introduction to	o chemical engineering courses, it covers the basics of unit
operations and the latest aspects of process design, ed	quipment selection, plant and operating economics, safety and

loss prevention. It is a cours that students will want to keep through their undergraduate education and on into their professional lives.

Objectives of the Course:

- Identify, formulate, and solve complex engineering problems

- Design a complex system, process, device or product under realistic constraints and conditions, in such a way as

to meet the desired result; ability, apply modern design methods for this purpose. (Realistic constraints and

conditions may include factors such as economic and environmental issues, sustainability, manufacturability,

ethics, health, safety issues, and social and political issues, according to the nature of the design.)

- Design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems

- Devise, select, and use modern techniques and tools needed for engineering practice; employ information technologies effectively

Learning Outcomes At the end of the course the student will be able to Assessment 1 do individual and overall mass balance by choosing boundaries of a physical system. 1,3 2 do individual and overall mass balance in a system having recycle 1,2,3 3 do block and pictorial flow diagrams 2,3

4	prepare flow diagrams having piping and instrumentation	3
5	select the most appropriate method for production	1,3
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm	
Cour	se's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics chemistry and chemical engineering.	, 5
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard method and syntheses.	
3	Ability to use the basics of mathematics, algorithmic principles and methods of compute engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	
5	Ability to choose and use existing technologies, materials while undertaking project task and solving these issues in chemical engineering and ability to eliminate malfunctions tha may occur in industrial and chemical processes or in laboratory equipment.	
6	Ability to design systems, components, units and processes that meet the requirements taking into account natural limitations such as economics, ecology, security and social aspects.	
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	e 1
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.	3
9	Ability to understand professional, ethical, legal and security issues and the responsibilitie characteristic for engineering.	5 3
10	Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations standards, methods and guidelines.	
CL: C	Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cour	rse Contents	

Week	Chapter	Topics	Exam
1	[1] Chapter 1	Introduction to design	
2	[1] Chapter 3	Utilities and energy efficient design. Fired heat, steam, hot oil and heat transfer fluids, cooling water.Sem: Discussion on the topic of public utilities and energy-efficient design. Heat, steam, hot oil and heat carriers, cooling water are burned.	
3	[1] Chapter 3	Utilities and energy efficient design. Refrigeration, water, compresed air, cooling air, nitrogen,	
4	[1] Chapter 3	Energy balance in a process. Energy recovery, heat exchange, waste-heat boilers. High –temprerature reactors Sem: Discussion on the topic energy balance in a process	
5	[1] Chapter 3	Energy balance in a process. Heat pumps. High- pressure process steams. Liquids and solids wastes.	
6	[1] Chapter 4	Process simulation. Process simulation programs. Selection of physical property models. Sem: Discussion on the topic heat pumps. High- pressure process steams.	
7		Liquids and solids wastes. Process simulation.	Midterm
8	[1] Chapter 2	 Diagrams for understanding Chemical Processes: BFD, PFD, P&ID(Preparing of flowsheets involving piping and instrumentation), 3-D Representation of a process, Preparing of flowsheets and CHEM-CAD application Sem: practical work: Preparation for technological schemes, including pipelines and instrumentation), 3-D Process presentation, Preparation for technological schemes and the use of CHEM-CAD 	
9	[1] Chapter 2	The structure and synthesis of process flow diagrams	
10	[1] Chapter 5	Hierarchy of process design, Batch versus continous process, Input/output structure, Recycle structure, general structure of separating system, heat exchanger net work and profit margin	

		Sem: survey: Hierarchy of process design, batch and continuous processes, input / output structure, recycling structure, general structure of the separation system, net heat exchanger operation and profit margin	
11	[1] Chapter 5	Understanding Process conditions:conditions of special concern for the operation of separation and reactor systems, and other equipments.Analysis of important process conditions	
12	[1] Chapter 5	Piping&Intrumentation:P&ID, Valveselection, Pumpsandcompressors, mechanical design of piping, pipe size selection, control andinstrumentation, alarms, safetyand interlocksSem: Understanding Process conditions:conditions of special concern forthe operation of separation and reactor systems, and other equipments.	
13	[1] Chapter 8	Cost calculation in process design steps and optimisation.	
14	[1] Chapter 8	Cost calculation in process design steps and optimization Sem: Cost calculation in process design steps and optimization	
15	[1] Chapter 8	Cost calculation in process design steps and optimisation	
16			Final

Recommended Sources

TEXTBOOK(S)

 Kindle Edition. Gavin Towler, R. K. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design 2nd Edition, Sinnott, 2008, p. 1245

2. R.K. Sinnott, Chemical Engineering Design: Chemical Engineering, Elsevier, 2005. p 1056

Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminar	0%	
MidtermExam	20%	Written Exam
FinalExam	50%	Written-Oral Exam
Total	100%	
Assessment Criteria	I	
Final grades are determine	d according to the Ac	cademic Regulations of Azerbaijan State Oil and İndustry
University for undergraduate	to studios	

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration	Total Workload
Activities	Number	(hour)	(hour)
Course duration in class	14	3	42
Preparation for Presentation	1	9	9
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midtermexam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	18	18
Total Workload			150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Control and system engineering" department

Course Unit Title	Chemical engineering process dynamics and control
Course Unit Code	ENG 4101

Type of Course Unit	Compulsory
Level of Course Unit	4 nd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	4
Semester when the course unit is delivered	7
Course Coordinator	Aygun A.SAFAROVA
Name of Lecturer (s)	Aygun A.SAFAROVA
Name of Assistant (s)	-
Mode of Delivery	Face to Face, , Seminar.
Language of Instruction	English
Prerequisites	ENG 3101 Chemical engineering reactor design
Recommended Optional Program Components	-
	•

Process structure. The structure of chemical processes as the object of control. Features and criteria for the analysis of the dynamics of chemical processes. Basis of the theory of identification concepts. The issue of identification. Identification of the process. Analysis of mathematical modeling methods of control objects. Optimal control. Basic concepts and optimization criteria. The methods of optimal control.

Objectives of the Course:

Students should know more about various modeling methods, especially experimental and statistical methods and their applications. Students should be able to use all accumulated knowledge for an understanding dynamic modeling techniques, computer skills of modeling systems.

Learning Outcomes		
At the	end of the course the student will be able to	Assessment
1	gain knowledge about various modeling techniques and their application areas;	1,2,3
2	adopt the methods of creating analytical models of typical technological objects;	1,2,3
3	to give information about mathematical modeling methods by experimental-statistical	1, 2
	methods;	
4	get acquainted with dynamic modeling techniques;	1,2
5	adopting modeling algorithms;	1,3
6	to gain theoretical knowledge on mathematical contributions of optimization of	2
	typical chemical technological processes	

7		on of algorithms that provide optimal regimes for chemical-	1,3
Asses	technological process	Exam, 2. Presentation, 3. Midterm exam	
	se's Contribution to Pro		
		, ja mini	CL
1	Ability to colve complex	x issues and tasks by using the principles of mathematics, physics,	CE
1			4
-	chemistry and chemical e		
2	-	linate, implement, substantiate laboratory processes while carrying	
	-	to obtain and extract chemical compounds using standard methods	3
	and syntheses.		
3	Ability to use the basics	of mathematics, algorithmic principles and methods of computer	
	engineering in the model	ing, to design of chemical engineering systems, analyze and	5
	interpret data using statis	stical methods.	
4	Ability to use the technic	ues, materials, skills and modern engineering tools which are used	
	in engineering and to car	ry out industrial and chemical processes, control them and to apply	4
	chemical engineering pri	inciples at designing of these processes.	
5	Ability to choose and use	e existing technologies, materials while undertaking project tasks and	
	•	hemical engineering and ability to eliminate malfunctions that may	4
	-	hemical processes or in laboratory equipment.	
6		, components, units and processes that meet the requirements, taking	
0		ral limitations such as economics, ecology, security and social aspects	
7			
/	-	ge skills to exchange and obtain some knowledge gained from the	1
	foreign sources.		
8		oblem, to identify the basic requirements, to justify the idea and	3
	-	sults and to compare them.	
9		ofessional, ethical, legal and security issues and the responsibilities	3
	characteristic for enginee	ering.	
10	Ability to work productiv	vely in multidisciplinary groups, especially in projects requiring	
	engineering skills and to	carry out all work in accordance with relevant laws, regulations,	3
	standards, methods and g	guidelines.	
CL: C	Contribution Level (1: Ver	y Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cours	se Contents		
Weel	k Chapter	Topics	Exam
		The content and objectives of the course. Introduction to	
1	[1]		
	chapter 1, pp.3-5-	Controls. Process. Control Background. The Objectives of Control.	
		The Control Loop. Process variables. Measured variables.	
2	[1,3]	Manipulated variables. Automatic control.	
		Seminar 1: Definitions of the Elements in a Control Loop	

	chapter 1,2 pp.5-8,		
	pp5-10		
3	[3] chapter 3, pp.12-16	Closed and open control loops. Primary elements/Sensors. Ttransmitters. Recorders. Controllers.	
4	[4] chapter 3, pp. 20- 24,	Principles of Control Systems . Control Modes. The forms of control available in Process Control:. Feed Forward. The feedback control loop Seminar 2: Feedback control	
5	[4] chapter 4, pp. 32- 34	Advanced process control. Adaptive Control. Predictive Control. Feedback correction. Intelligent Control	
6	[5] chapter 1, pp.1—7	Identification of Dynamic Systems. Basic sequence of the identification. Properties of identification. Tasks and Problems for the Identification of Dynamic Systems Seminar 3: Theoretical and Experimental Modeling .	
7	[5] chapter 1, pp.12-15	Typical identification methods. Mathematical Modeling. Describe the Process. Identify Process Objectives and Constraints.	
8			Midterm
9	[5] chapter 13, pp.369- 373, 377-379.	Statistical Analysis for Chemical Process Control.Statistics and Probability Background.Basic statistics.Linear Regression.	
		Seminar 4: Experimentally statistical modeling methods	
0	[6], chapter 1, pp.2-6	Introduction to optimization Statement of an optimization problem. Objective function . Classification of optimization problems.	
11	[6], chapter 2, pp.29-35	Unconstrained optimization. The gradient method. Newton's method. Comparison between Newton's method and the gradient method. Gradient method for optimal control of non-stationary technological processes Seminar 5 : Formulation of the optimization problem	
12	[6], chapter 3, pp.55-59	Nonlinear programming methods: introduction. Sequential and exact methods. Sequential augmented Lagrangian functions multi-stage non-stationary petrochemical processes Lagrangian method for determining optimal regimes of the hydrator block of the technological process of propylene glycol production	
13	[7], chapter 1, pp.2-4-	Discrete control: Bellman equations. Dynamic programming. Dynamic programming method for optimal regimes of chemical technological processes Seminar 6 : Classification of optimal process control systems:	
14	[7], chapter 2, pp.4-8	Continuous control: Hamilton-Jacobi-Bellman equations. Innite- horizon formulations.	
15	[7], chapter 3, pp.9-11	 Global optimization. Deterministic methods. Pontryagins maximum principle. Maximality principle for optimal control of non-stationary processes. Seminar 7: Optimal process control with nonlinear objective function 	

16						Final
Recommended Sources						
TEXTBOOK(S)						
1.	1. George Stephanopoulos, Chemical Process Dynamics and Controls Book I. The University of Michigan			versity of Michigan		
	Chemical Engineering,	, PTR Prentice Ha	all, 2006.			
2.	Peter WoolfChemical	•			e University of	Michigan Chemical
3.	Engineering Process D <u>P.W. Murrill</u> ,Instrume	•	-		mational Society	u of Automation 2006
3. 4.	Industrial Automation.					y of Automation,2000
5.	Rolf Isermann, Marco	Munchhof. Identi	fication of Dyr	amic Systems, S	Springer, 2011	
6.	A. Astolfi. Optimizatio	on. An ,introducti	on, Revision,	2006		
7.	Emanuel Todorov, Opt	timal Control The	ory, University	y of California S	an Diego. 2006	
Assessm	nent					
Attendar	nce	0%	At least 75%	class attendance	e is compulsory	
Presenta	tion	20%				
Quiz		10%				
Seminar	S	0%				
Midterm	Midterm Exam		Written Exam			
Final Ex	Final Exam		Written-Oral Exam			
Total	Total 1					
Assessm	ent Criteria	I				
-	ades are determined acc	ording to the Aca	demic Regulat	ions of ASOIU	for Undergradua	ate Studies
Course	Policies					
•	Attendance of the cour	se is mandatory.				
•	Late assignments will	not be accepted u	nless an agreen	nent is reached v	with the lecturer	·
•	Students cannot use ca	lculators during th	ne exam.			
•	Cheating and plagiaris	m will not be tole	rated. Cheating	g will be penaliz	ed according to	the Azerbaijan State
	Oil and Industrial Univ	versity General St	udent Disciplin	ne Regulations		
ECTS a	llocated based on Stud	lent Workload				
Activities			Number	Duration	Total	
				i (unicer	(hour)	Workload(hour)
Course duration in class			14	3	42	
Presentation			1	7	7	
Self-study			14	4	56	
Tutorials	S			14	1	14
Midterm	Examination			1	3	3
Preparat	Preparation for midterm exam			1	10	10

Final Examination

Preparation for final exam	1	20	20
Total Workload			150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology" department

Course Unit Title	Chemical Engineering laboratory-2
Course Unit Code	LAB 4101

Type of Course Unit	Compulsory
Level of Course Unit	4 th year of CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	1
Practice (hour/week)	-
Laboratory	2
Year of Study	4
Semester when the course unit is delivered	7
Course Coordinator	Sultanova Gulnara
Name of Lecturer (s)	Sultanova Gulnara
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Laboratory
Language of Instruction	English
Prerequisites	LAB3201 Chemical Engineering laboratory-1
Recommended Optional Program Components	-

A first introduction to the processes and apparatuses of chemical industry. A brief survey of the process and apparatuses of chemical industry, focusing on the classification of process and apparatuses, types of heat-exchangers, reactors, furnaces, material and thermal balances.

Objectives of the Course:

During orientation you can expect to:

- Learn more about your academic program
- Learn about why Chemical engineering lab. and how to be familiar with that since
- Schedule your first set of classes
- Meet faculty advisors, and current state students
- Interact with fellow incoming students
- Learn how to Ask Questions.

Learning Outcomes

At th	Assessment	
1	Use the knowledge gained for its sufficient application in research and laboratory work.	1,3
2	Apply knowledge of math, science, engineering, and mass transfer principles to solve process and system problems, including steady and unsteady mass transport.	1,2,3

3	Design a system, component, equipment or process to meet desired mass 2,3 transport needs.		2,3
4	Identifying, formulating, and solving engineering and mass transfer problems, including continuous and staged contact equipment, and vapor-liquid equilibrium3		
5	understand ar	nd implement professional and ethical standards.	1,3
Ass	essment Meth	nods: 1. Final Exam, 2. Presentation, 3 midterm exam	
Cou	rse's Contrib	ution to Program	
			CL
1	physics, chen	ve complex issues and tasks by using the principles of mathematics, nistry and chemical engineering.	4
2	carrying out standard meth	ecute, coordinate, implement, substantiate laboratory processes while the experiments and to obtain and extract chemical compounds using nods and syntheses.	3
3	computer eng analyze and i	the basics of mathematics, algorithmic principles and methods of gineering in the modeling, to design of chemical engineering systems, interpret data using statistical methods.	4
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.		5
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.		
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 4		
7	Ability to use from the fore	the language skills to exchange and obtain some knowledge gained ign sources.	1
8	•	lyze the problem, to identify the basic requirements, to justify the idea evaluate the results and to compare them.	3
9	Ability to understand professional, ethical, legal and security issues and the 3		
10	Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant4laws, regulations, standards, methods and guidelines.4		
CL:	Contribution	Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cou	rse Contents		
Wee k	Chapter	Topics	Exam

		Processes of mass exchange	
1	Book I Chap. I	Lab work: safety rules. These rules are designed to ensure that all work done in the laboratory will be safe for you and your fellow students. In addition to the rules listed here, your institution may have a set of rules that you will be asked to read and to sign as evidence that you have read them.	
2	Book II Chap. I	Lab work: Temperature controller Control technology is now an integral part of nearly all areas of engineering. In process control engineering, we differentiate between open and closed loop control. The difference between the two terms is explained below: Open control loop is a process in a system in which an output variable is rigidly influenced by an input variable. This is based on the principles of the system.	
3	Book III Chap. II	Distillation processes and its types Lab work: Temperature controller Control technology is now an integral part of nearly all areas of engineering. In process control engineering, we differentiate between open and closed loop control. The difference between the two terms is explained below: Open control loop is a process in a system in which an output variable is rigidly influenced by an input variable. This is based on the principles of the system.	
4	Book III Chap.III	Lab work: Temperature controller Control technology is now an integral part of nearly all areas of engineering. In process control engineering, we differentiate between open and closed loop control. The difference between the two terms is explained below: Open control loop is a process in a system in which an output variable is rigidly influenced by an input variable. This is based on the principles of the system.	
5	Book I Chap.IV	Rectification process. Material and thermal balances of rectification process Lab work: Temperature controller Control technology is now an integral part of nearly all areas of engineering. In process control engineering, we differentiate between open and closed loop control. The difference between the two terms is explained below: Open control loop is a process in a system in which an output variable is rigidly influenced by an input variable. This is based on the principles of the system.	Midterm
6	Book II Chap.III	Lab work: Temperature controller Control technology is now an integral part of nearly all areas of engineering. In process control engineering, we differentiate	

	1		
		between open and closed loop control. The difference between the two terms is explained below:	
		Open control loop is a process in a system in which an output variable is rigidly influenced by an input variable. This is based on the principles of the system.	
		Process of absorption. Scheme of currents in absorber	
7	Book III Chap.IV	Lab work: Temperature controller Control technology is now an integral part of nearly all areas of engineering. In process control engineering, we differentiate between open and closed loop control. The difference between the two terms is explained below: Open control loop is a process in a system in which an output variable is rigidly influenced by an input variable. This is based on the principles of the system.	
8			Midterm
		Absorption process. Methods realization of adsorption process	
9	Book III Chap.V	Lab work: Adsorption The CE 583 device is part of the 2E - ENERGY & ENVIRONMENT product range. ENERGY The ENERGY product range includes devices from the subject area of renewable energy. Examples include photovoltaic, solar thermal and hydrodynamic power. ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
10	Book I Chap.V	Lab work: Adsorption The CE 583 device is part of the 2E - ENERGY & ENVIRONMENT product range. ENERGY The ENERGY product range includes devices from the subject area of renewable energy. Examples include photovoltaic, solar thermal and hydrodynamic power. ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
11	Book II	Extraction process. Methods of carrying-out of extraction	
	Chap V		

	L		
		Lab work: Adsorption The CE 583 device is part of the 2E - ENERGY & ENVIRONMENT product range. ENERGY The ENERGY product range includes devices from the subject area of renewable energy. Examples include photovoltaic, solar thermal and hydrodynamic power. ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes	
		the training area of waste.	
12	Book III Chap. IV	Lab work: Adsorption The CE 583 device is part of the 2E - ENERGY & ENVIRONMENT product range. ENERGY The ENERGY product range includes devices from the subject area of renewable energy. Examples include photovoltaic, solar thermal and hydrodynamic power. ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
13	Book III Chap.I	Drying process. Types of drying processes Lab work: Adsorption The CE 583 device is part of the 2E - ENERGY & ENVIRONMENT product range. ENERGY The ENERGY product range includes devices from the subject area of renewable energy. Examples include photovoltaic, solar thermal and hydrodynamic power. ENVIRONMENT Contaminants are transported and transformed in the hydrosphere (water), atmosphere (air) and pedosphere (soil). Water, soil and air are described as environmental compartments and are connected to each other by to the global water cycle. Additionally, the ENVIRONMENT area includes the training area of waste.	
14	Book II	Revision all lab works	
15	Chap.III Book I Chap.VI	Drying process. Types of drying processes	

	Revision all lab works	
16		Final

Recommended Sources TEXTBOOK(S)

- 1. Bird, Stewart and Lightfoot (BSL), Transport Phenomena, Wiley International, 1960.
- 2. L. G. Leal, Laminar Flow and Convective Transport Processes, Butterworth-Heineman, 1992.

• 3. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 1967. Assessment

Attendance	0%	At least 75% class attendance is compulsory
Presentation	10%	
Laboratory	20%	
Midterm Exam	20%	Written exam
Final Exam	50%	Written-Oral exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of ASOIU for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration	Total
Aduvites	Nulliber	(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Tutorials	14	1	14
Self-study	14	4	56
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3

Preparation for final exam	1	20	20
Total Workload			150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Industrial safety and labour protection" department

Course Unit Title	Chemical Process Safety
Course Unit Code	CHEM 4101

Type of Course Unit	Compulsory
Level of Course Unit	4 th year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	4
Semester when the course unit is delivered	7
Course Coordinator	Amina Huseynova
Name of Lecturer (s)	Amina Huseynova
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	ENG 3101 Chemical Engineering Reactor Design
Recommended Optional Program	-
Components	

The main focus of the course will be issues involving safety, health and loss prevention in the chemical process industry. You will be introduced to safety hardware, sources and prediction of toxic releases, potential harmful effects of chemicals in the workplace, as well as hazard identification. Awareness of these and other safety concerns will be raised so you can develop effective strategies for analyzing and evaluating the safety of chemical processes to reduce operating hazards.

Objectives of the Course:

It is reasonable to conclude that the growth of an industry is also dependent on technological advances. This is especially true in the chemical industry, which is entering an era of more complex processes: higher pressure, more reactive chemicals, and exotic chemistry. More complex processes require more complex safety technology. Many industrialists even believe that the development and application of safety technology is actually a constraint on the growth of the chemical industry. As chemical process technology becomes more complex, chemical engineers will need a more detailed and fundamental understanding of safety. The primary objective of this course is to present the important technical fundamentals of chemical process safety. The emphasis on the fundamentals will help the student and practicing scientist to understand the concepts and apply them accordingly. This application requires a significant quantity of fundamental knowledge and technology.

Learr	Learning Outcomes		
At the	At the end of the course the student will be able to Assessment		
1	To obtain an understanding about how chemicals affect us physically and how hazards can be quantified.	1,2,3	
2	To learn the basics of laboratory and plant safety procedures	1	

3	To learn about th	he release of chemicals and how to model it	1,2,3
4	To understand th	ne causes, effects and prevention of fires and explosions	1
5	To gain an appre	eciation of the use and sizing of pressure relief valves	1
6		s material with other chemical engineering areas and develop laboratory and plant safety.	1,2,3
Asses	sment Methods: 1	1. Final Exam, 2. Presentation, 3. Midterm exam	
Course	e's Contribution to	o Program	
			CL
1	physics, chemist	complex issues and tasks by using the principles of mathematics, ary and chemical engineering.	3
2	•	te, coordinate, implement, substantiate laboratory processes while experiments and to obtain and extract chemical compounds using ls and syntheses.	3
3	computer engine	he basics of mathematics, algorithmic principles and methods of beering in the modeling, to design of chemical engineering systems, rpret data using statistical methods.	3
4	are used in engin	e techniques, materials, skills and modern engineering tools which neering and to carry out industrial and chemical processes, control ly chemical engineering principles at designing of these processes.	4
5	tasks and solvir	e and use existing technologies, materials while undertaking project ng these issues in chemical engineering and ability to eliminate at may occur in industrial and chemical processes or in laboratory	3
6	Ability to desig	gn systems, components, units and processes that meet the king into account natural limitations such as economics, ecology, ial aspects.	4
7		e language skills to exchange and obtain some knowledge gained	1
8	Ability to analyz	the problem, to identify the basic requirements, to justify the idea aluate the results and to compare them.	3
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.		5
10	requiring engine	productively in multidisciplinary groups, especially in projects being skills and to carry out all work in accordance with relevant s, standards, methods and guidelines.	3
CL: Co	ontribution Level (1	: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cours	e Contents		
Week	Chapter	Topics	Exam
1	[1] Chapter1	Introduction to Chemical process safety. Safety programs. Accepable risk.	

	p.p.1-32		
2	[2] Chapter4 p.p.37-55	Legislative basis of safety at work. Law, regulations and standards. Seminar1. Safety programs. Accident and loss statistics.	
3	[1] Chapter3 p.p.78-110	Occupational Health and Industrial Hygiene. Anticipation and Identification. Evaluation and control.	
4	[1] Chapter8 p.p.384-418	Classification of hazards at work place. Chemical hazards. Controlling reactive hazards. Seminar2. Commitment, Awareness, and Identification of Reactive Chemical Hazards	
5	[1] Chapter11 p.p.505-538	Identification of chemical hazards. Process Hazards Checklists.	
6	[1] Chapter12 p.p.549-588	Risk Assessment. Review of Probability Theory. Event Trees. Fault trees. Seminar3. Hazards and Operability Studies	
7			Midterm
8	[1] Chapter6 245-274	Flammability Characteristics of liquids and Vapours. The Fire Triangle. Distinction between Fires and Explosions Seminar4 Flammability Characteristics of Liquids, Gases and Vapours. Flammability Limit Dependence on Temperature and on pressure.	
9	[2] Chapter16 p.p.285-324	Fire protection and preventions. Causes of fires. Improving Fire protection and prevention.	
10	[2] Chapter17 p.p.325-336	Explosions and explosives. Explosion hazards. Dust explosions Seminar5. Causes of fire and explosions.	
11	[1] Chapter7 p.p.333-350	Static Electricity. Fundamentals of static charge.	
12	[1] Chapter7 p.p.356-363	Controlling Static Electricity. General Design Methods To Prevent Electrostatic Seminar6. Static electricity and its controlling methods	
13	[2] Chapter28 p.p.513-536	Personal Protective Equipment. Hearing protection. Respiratory protection. Hand, finger and arm protection.	
14	[1] Chapter13 p.p.598-613	Process Safety Strategies. Managing Safety. Designs for Process Safety Seminar7 Procedures—Safety Reviews and Accident Investigations	
15	[1] Chapter 14 p.p.621-646	Case Histories. Tank Car Loading Explosion. Ethylene Oxide Explosion. Training within Universities.	

16						
Recommen						I
		l and J.F. Louvar, Carlentice, 2002.	hemical Proce	ess Safety: Fun	damentals wi	th Applications, 2 nd
2.	Brauer, R.,	Safety and Health fo	or Engineers, 2	2 nd Edition, Joh	n Wiley & So	ns, 2006.
Assessment	t					
Attendance		0%	At least 75%	class attendance	e is compulsor	У
Presentation	ı	20%				
Quiz		10%				
Seminars		0%				
Midterm Ex	kam	20%	Written Ex	am		
Final Exam		50%	Written-Or	al Exam		
Total		100%				
Course Poli Atte Late	icies endance of t e assignmen	he course is mandate ts will not be accept	ed unless an a			
Course Poli Atte Late Che Aze	icies endance of t e assignmen eating and p erbaijan Stat cated based	he course is mandate ts will not be accept lagiarism will not be e Oil and Industrial on Student Workle	ed unless an a tolerated. Ch University Ge	eating will be eneral Student	penalized acc	ording to the
Course Poli Atte Late Che Aze	icies endance of t e assignmen eating and p erbaijan Stat cated based	he course is mandate ts will not be accept lagiarism will not be e Oil and Industrial	ed unless an a tolerated. Ch University Ge	eating will be	penalized acc Discipline Re	ording to the gulations
Course Poli Atte Late Che Aze ECTS alloc	icies endance of t e assignmen eating and p erbaijan Stat	he course is mandate its will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	eating will be eneral Student	penalized acc Discipline Re Duration	ording to the gulations Total
Course Poli Atte Late Che Aze ECTS alloc Course dur	icies endance of t e assignmen eating and p erbaijan Stat cated based	he course is mandate its will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	eating will be neral Student	penalized acc Discipline Re Duration (hour)	ording to the gulations Total Workload(hour)
Course Poli Atte Late Che Aze ECTS alloc Course dur Presentation	icies endance of t e assignmen eating and p erbaijan Stat cated based	he course is mandate its will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	eating will be eneral Student Number 14	penalized acc Discipline Re Duration (hour) 3	ording to the gulations Total Workload(hour) 42
Course Poli • Atte • Late • Che Aze ECTS alloc Course dur Presentation Self-study	icies endance of t e assignmen eating and p erbaijan Stat cated based	he course is mandate its will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	eating will be eneral Student I Number 14 1	penalized acc Discipline Re Duration (hour) 3 10	ording to the gulations Total Workload(hour) 42 10
Course Poli Atte Late Che Aze ECTS alloc Course dur Presentation Self-study Tutorials	icies endance of t e assignmen eating and pi erbaijan Stat cated based	he course is mandate its will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	eating will be neral Student I Number 14 1 14	penalized acc Discipline Re Duration (hour) 3 10 4	ording to the gulations Total Workload(hour) 42 10 56
Course Poli Atte Late Che Aze ECTS alloc Course dur Presentation Self-study Tutorials Midterm Ex	icies endance of t e assignmen eating and pi erbaijan Stat cated based ration in cla	he course is mandate ts will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	Number 14 14 14 14	penalized acc Discipline Re Duration (hour) 3 10 4 1	ording to the gulations Total Workload(hour) 42 10 56 14
Course Poli Atte Late Che Aze ECTS alloc Course dur Presentation Self-study Tutorials Midterm Ex Preparation	icies endance of t e assignmen eating and pi erbaijan Stat cated based ration in cla	he course is mandate ts will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	Number 14 14 14 14 14 14	penalized acc Discipline Re Duration (hour) 3 10 4 1 3	ording to the gulations Total Workload(hour) 42 10 56 14 3
Course Poli Atte Late Che Aze ECTS alloc Course dur Presentation Self-study Tutorials Midterm Ex Preparation Final Exami	icies endance of t e assignmen eating and pi erbaijan Stat cated based ration in cla n camination for midterm ination	he course is mandate ts will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	Number 14 14 14 14 14 14 14 14 14 14	penalized acc Discipline Re Duration (hour) 3 10 4 1 3 8	Total Workload(hour) 42 10 56 14 3 8
Course Poli Atte Late Che Aze ECTS alloc ECTS alloc Course dur Presentation Self-study Tutorials Midterm Ex Preparation Final Exami Preparation	icies endance of t e assignmen eating and pi erbaijan Stat cated based ration in cla n camination for midterm ination for final exa	he course is mandate ts will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities	ed unless an a tolerated. Ch University Ge	eating will be oneral Student I Number 14 14 14 14 14 1 1 1 1	penalized acc Discipline Re Duration (hour) 3 10 4 1 3 8 3	Total Workload(hour) 42 10 56 14 3 8 3
Late Che Aze	icies endance of t e assignmen eating and pi erbaijan Stat cated based ration in cla n camination for midterm ination for final exa kload	he course is mandate its will not be accept lagiarism will not be e Oil and Industrial on Student Workle Activities iss	ed unless an a tolerated. Ch University Ge	eating will be oneral Student I Number 14 14 14 14 14 1 1 1 1	penalized acc Discipline Re Duration (hour) 3 10 4 1 3 8 3	Total Workload(hour) 42 10 56 14 3 8 3 18

Chemical engineering (CHEN) program, "Technology of organic substances and high molecular compounds" department

Course Unit Title	Chemical Process Design II
Course Unit Code	CHEM 4102

Type of Course Unit	Compulsory
Level of Course Unit	4 nd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	4
Semester when the course unit is delivered	7
Course Coordinator	Narmina Guliyeva
Name of Lecturer (s)	Narmina Guliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	CHEM 3201 Chemical Process Design I
Recommended Optional Program Components	-

Chemical Engineering Design is a complete course text for students of chemical engineering. Written for the Senior Design Course, and also suitable for introduction to chemical engineering courses, it covers the basics of unit operations and the latest aspects of process design, equipment selection, plant and operating economics, safety and loss prevention. It is a course that students will want to keep through their undergraduate education and on into their professional lives.

Objectives of the Course:

- Identify, formulate, and solve complex engineering problems

- Design a complex system, process, device or product under realistic constraints and conditions, in such a way as

to meet the desired result; ability, apply modern design methods for this purpose. (Realistic constraints and

conditions may include factors such as economic and environmental issues, sustainability, manufacturability,

ethics, health, safety issues, and social and political issues, according to the nature of the design.)

- Design and conduct experiments, gather data, analyze and interpret results for investigating engineering problems

- Devise, select, and use modern techniques and tools needed for engineering practice; employ information technologies effectively

Lear	Learning Outcomes		
At th	e end of the course the student will be able to	Assessment	
1	Know safety and loss prevention. Do reactor design.	1,3	
2	Do equipment selection, specification and design.	1,2,3	

3	Design separation columns (Distillation, Absorption and Extraction). Design heat exchangers. Design heat exchangers.	2,3
4	Do costing and project evaluation.	3
5	Know plant site/place selection, ethics and professionalism	1,3
	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam	
Cour	rse's Contribution to Program	CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	5
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	4
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	5
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	4
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.	4
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	1
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.	3
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.	3

e	engineering skill	productively in multidisciplinary groups, especially in projects requiring s and to carry out all work in accordance with relevant laws, regulations, ds and guidelines.	3
CL: Co	ontribution Level	(1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Course	e Contents		
Week	Chapter	Topics	Exam
1	[1] Chapter 6	Materials of construction: material and mechanical properties, corrosion resistance, selection of corrosion resistance, material costs, commonly used	
		materials, design for material corrosion reistance	
2	[1] Chapter 7	Design information and data: sources of information and manufacturing processes, accuracy, prediction of physical properties, phase equilibrium data Sem: Materials of construction. Design information and data	
3	[1] Chapter 10	Safety and loss prevention: Materials and process hazards, analysis of product and proses safety, failure mode effect analysis, pressure relief	
4	[1] Chapter 18	Utilizing experience based principles to confirm the suitability of a process design: technical heuristics and short cut methods Equipment selection, spesification and design: separators,size reduction and enlergement, mixing equipment,transport and storage of materials, reactors Sem: Safety and loss prevention. Utilizing experience based principles to confirm the suitability of a process design.	
5	[1] Chapter 18	Utilizing experience based principles to confirm the suitability of a process design: technical heuristics and short cut methods Equipment selection, spesification and design: separators, size reduction and enlergement, mixing equipment, transport and storage of materials, reactors	
6	[1] Chapter	Equipment selection ,spesification and design: separators,size reduction and enlergement, mixing equipment,transport and storage of materials, reactors Sem: Equipment selection ,spesification and design: separators,size reduction and enlergement, mixing equipment,transport and storage of materials, reactors.	
7			Midterm

	1				
8	[1] Chapter	and enlerge reactors Sem: Equ	ement, mixis	pesification and design: separators,size reduction ng equipment,transport and storage of materials, ction ,spesification and design: separators,size	
		materials, r	eactors.	nent, mixing equipment, transport and storage of	
9	[1]	-	-	ormance evaluation: analysis of systems Reactor	
9	Chapter	-	attranfer in t	on of desired product,thermodynamics and he reactor	
		Tools for p	process perfo	ormance evaluation: analysis of systems Reactor	
		performanc	e: productio	on of desired product, thermodynamics and	
10	[1] Chapter	kinetics,hea	attranfer in t	he reactor	
		Sem: Tools	s for process	performance evaluation.	
	[1]	Separation	Colums (di	stilation, absorption and extraction): continuous	
11	Chapter 17	distialtion,	distialtion va	ariables, binary and multi systems, plate efficieny,	
packed colums, solvent extraction					
		-		stilation, absorption and extraction):continuous	
	[1]			ariables, binary and multi systems, plate efficieny,	
12	Chapter 17	packed colu	ums, solvent	extraction	
		Sem: Sepa	ration Colun	ns, distilation, absorption and extraction.	
13	[1] Chapter 15	Heat exhan	gers and des	ign, CHEM-CAD applications	
	[1]	Heat exhan	gers and des	ign	
14	Chapter 15	Sem: Heat	exhangers a	nd design.	
15	[1]	Plant site	e selection	, sitelayout, environmental considerations,	
15	Chapter 15	environme	ntal regulation	ons, and pollution prevention during design	
16					Final
Recomm	nended Source	es			
ТЕХТВ	OOK(S)				
1.	Gavin Towler	(Author), <u>R.</u>	K. Sinnot, t	Chemical Engineering Design: Principles, Practice	and Economics
	of Plant and P	rocess Desig	n 2nd Editio	n, Kindle Edition. 2008, P. 1245	
2.	R.K. Sinnott,	Chemical Er	igineering D	esign: Chemical Engineering, Wiley; 2005. P 1056	
Assessm	nent				
Attendar	nce		0%	At least 75% class attendance is compulsory	
L				L	

Presentation	20%	
Quiz	10%	
Seminar	0%	
Midterm Exam	20%	Written Exam
FinalExam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry

University for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students can use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload (hour)
Course duration in class	14	3	42
Presentation	1	6	6
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for rmidterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	20	20
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

department

Course Unit Title	Molecular chemical engineering
Course Unit Code	ENG 5001
Type of Course Unit	Elective
Type of Course Chit	
Level of Course Unit	year CHEN program

National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	Leyla Z.Vezirova
Name of Lecturer (s)	Leyla Z.Vezirova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, seminar
Language of Instruction	English
Prerequisites	-
Recommended Optional Programme Components	-
Commendation of the second sec	

This course covers molecular-level engineering and analysis of chemical processes. The use of chemical bonding, reactivity, and other key concepts in the design and tailoring of organic systems are discussed in this class. Specific class topics include application and development of structure-property relationships, and descriptions of the chemical forces and structural factors that govern supramolecular and interfacial phenomena for molecular .

Objectives of the Course:

Key aspects of chemical engineering involve the use and manipulation of intermolecular interactions in the liquid and solid state. This course provides an introduction to these concepts of molecular design and self assembly from a chemical perspective. The basic principles of covalent and ionic bonding, intermolecular interactions, and hydrogen bonding, and the roles of these forces in the final properties of liquids and solids will be discussed. This course emphasizes the ability to control and manipulate familiar macroscopic properties of chemical systems by molecularly engineering the "active" components. Emphasis will be placed on the understanding of the nature of chemical and intermolecular forces and the ability to molecularly design new materials systems based on the required property, ease of synthesis, and typical engineering constraints (cost, environmental factors, etc.). Discussions of the interplay between molecular structure and properties such as crystallization, (bio)adhesion, and friction provide examples of the paradigms of molecular design. The application of this understanding to chemical engineering problems in areas such as biomaterials, nanostructured organic materials, electro-optical materials, colloids, and surface science will be discussed.

Learning Outcomes

At the	Assessment	
1	An understand core aspects of applied chemistry relevant to engineering, including electrochemistry, inorganic chemistry, materials chemistry, organic chemistry, physical chemistry, polymer chemistry and supramolecular chemistry.	1,3

asside devi3Gra envi4Bui assination4Bui assination5SelAssessmeCourse's1Abi carristan2Abi carristan3Abi carristan3Abi carristan3Abi carristan3Abi carristan3Abi carristan3Abi carristan3Abi carristan5Abi carristan6Abi taki and6Abi taki aspi	n understand the relationship between molecular design motifs, supramolecular ssembly and system functionality in various biomedical, environmental and energy evices. Grasp current research topics in molecular engineering with relevance to healthcare, nvironment, energy and materials. Final an understanding of macromolecules and how smart molecular design and ssembly can provide material systems with unprecedented control over the resulting anoscopic architecture and functionality. elect the most appropriate method for production ment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam PsContributiontoProgram ability to solve complex issues and tasks by using the principles of mathematics, physic hemistry and chemical engineering. ability to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses. ability to use the basics of mathematics, algorithmic principles and methods of	1,2,3 2,3 2,3 1,3 CL s, 5 5 5
4 Bui asso nam 5 Sel Assessme Course's 1 Abi che 2 Abi car star 3 Abi car star 3 Abi car star 5 Abi ana 4 Abi use to a 5 Abi ana 4 Abi use to a	nvironment, energy and materials. Fuild an understanding of macromolecules and how smart molecular design and ssembly can provide material systems with unprecedented control over the resulting anoscopic architecture and functionality. elect the most appropriate method for production ment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam PsContributiontoProgram bility to solve complex issues and tasks by using the principles of mathematics, physic hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	2,3 1,3 CL s, 5
asse nami5SelAssessmeCourse's1Abi che2Abi car2Abi car3Abi car3Abi car3Abi car3Abi car3Abi car3Abi car3Abi car3Abi car4Abi use5Abi and5Abi car6Abi tak6Abi tak	ssembly can provide material systems with unprecedented control over the resulting anoscopic architecture and functionality. elect the most appropriate method for production ment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam PsContributiontoProgram bility to solve complex issues and tasks by using the principles of mathematics, physic hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	1,3 CL s, 5
Assessme Course'se 1 Abi che 2 Abi car star 3 Abi car star 3 Abi con ana 4 Abi use to a 5 Abi and may 6 Abi taki asp	nent Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam SeContributiontoProgram bility to solve complex issues and tasks by using the principles of mathematics, physic hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	CL s, 5
Course'ss 1 Abi che 2 Abi car star 3 Abi corr ana 4 Abi use to a 5 Abi and may 6 Abi taki asp	PsContributiontoProgram bility to solve complex issues and tasks by using the principles of mathematics, physic hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	s, 5
1Abi1Abi2Abi2Abicarrstar3Abiconana4Abiuseto a5Abiandmay6Abitakiasp	bility to solve complex issues and tasks by using the principles of mathematics, physic hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	s, 5
2 Abi car star 3 Abi con ana 4 Abi use to a 5 Abi and may 6 Abi taki asp	hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	s, 5
2 Abi car star 3 Abi con ana 4 Abi use to a 5 Abi and may 6 Abi taki asp	hemistry and chemical engineering. bility to execute, coordinate, implement, substantiate laboratory processes while arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	5
cari star 3 Abi con ana 4 Abi use to a 5 Abi and maj 6 Abi taki asp	arrying out the experiments and to obtain and extract chemical compounds using tandard methods and syntheses.	5
3 Abi con ana 4 Abi use to a 5 Abi and may 6 Abi taki asp	andard methods and syntheses.	5
4 Abi use to a 5 Abi and may 6 Abi taki asp	bility to use the basics of mathematics, algorithmic principles and methods of	
4 Abi use to a 5 Abi and may 6 Abi taki asp		
4 Abi use to a 5 Abi and may 6 Abi taki	omputer engineering in the modeling, to design of chemical engineering systems,	4
5 Abi and may 6 Abi taki	nalyze and interpret data using statistical methods.	
to a 5 Abi and may 6 Abi taki asp	bility to use the techniques, materials, skills and modern engineering tools which are	
5 Abi and may 6 Abi taki asp	sed in engineering and to carry out industrial and chemical processes, control them an	1 5
and may 6 Abi taki asp	apply chemical engineering principles at designing of these processes.	
6 Abi taki asp	bility to choose and use existing technologies, materials while undertaking project task	KS
6 Abi taki asp	nd solving these issues in chemical engineering and ability to eliminate malfunctions th	at 4
taki asp	nay occur in industrial and chemical processes or in laboratory equipment.	
asp	bility to design systems, components, units and processes that meet the requirement	s,
_	king into account natural limitations such as economics, ecology, security and soci	al 5
	spects.	
7 Ab	bility to use the language skills to exchange and obtain some knowledge gained fro	m 1
the	ne foreign sources.	1
8 Abi	bility to analyze the problem, to identify the basic requirements, to justify the idea ar	id 3
crit		5
9 Ab	ritically evaluate the results and to compare them.	e 3
res	ritically evaluate the results and to compare them. bility to understand professional, ethical, legal and security issues and th	5
10 Ab		
eng star	bility to understand professional, ethical, legal and security issues and th	g

ourse	Contents		
Veek	Chapter	Topics	Exam
1	[2] ch.1,2, p. 3-27	Course Introduction, Perspective on Intermolecular Interactions and Relevance to Application. Molecular Interactions: Influence on Macroscopic Properties	
2	[2] ch.3,4, p. 31-67	Review of Chemical Structures and Trends Polar and VanderWaal Interactions Seminar: Course Introduction, Molecular Interactions: Influence on Macroscopic Properties. Review of Chemical Structures and Trends Polar and VanderWaal Interactions	
3	[2] ch.13, p. 260-288	Dielectric Constants - Origin and Importance Solvation, Solvent Design, Solute Partitioning Chelation and Co-solvents	
4	[2] ch.14, p. 288-312	Chelation and Co-solvents Solvation of Large Molecules - Polymer Solubility Seminar: Dielectric Constants - Origin and Importance. Solvation of Large Molecules - Polymer Solubility	
5	[1] ch.7,8 p. 257-319 [1] ch.7, p. 257-285	Block Copolymers - Ordered Nanophases Introduction to Solid State and Intermolecular Interactions Surfaces of Solids	
6	[2] ch.16, p. 341-370	Molecular Crystals Hydrogen Bonding in the Solid State Molecular Recognition and Self Assembly Seminar: Introduction to Solid State and Intermolecular Interactions Surfaces of Solids. Molecular Recognition and Self Assembly	
7			Midterm
8	[1] ch.7, p. 257-285 [1] ch.9, p. 328-347	Surfaces of solids. Liquid Crystalline Systems - Thermotropic Liquid Crystalline Systems - Lyotropic and Bio Examples Micellar Systems Micellar Systems (cont.) Micellar Systems (cont.) / Applications	
9	[1] ch.13, p. 465-497	Introduction to Liquid / Solid Interactions Wetting, Flotation and Detergency Seminar: Surfaces of solids. Liquid Crystalline Systems – Thermotropic	
10	[2] ch.15, p. 312-317 [1] ch.12, p. 431-460	Fundamentals of Adhesion Fruction, Lubrication and Adhesion	
11	[1] ch.11, p. 390-422	Adsorbtion from solution Molecular Adsorption Friction Seminar: Fundamentals of Adhesion. Molecular Adsorption. Friction	
	[1] ch.15,	Polymer Adsorption / Adhesion to Surfaces	

13	[1] ch.15, p. 537-563	Macromolecular Surface Modification / Surface Engineering Seminar: Polymer Adsorption / Adhesion to Surfaces. Macromolecular Surface Modification / Surface Engineering	
14	[3] ch.4, p. 161-200	Organic Monolayers (SAMs) Organisation of porphyrins in monolayers and monolayer assemblies	
15	[3] ch.5, p. 207-250	Bio Applications of Organic Monolayers / Bioadhesion Other Applications of Surface Modification Seminar: Organic Monolayers (SAMs). Bio Applications of Organic Monolayers	
16			Final Exam

RecommendedSources

TEXTBOOK(S)

- 1. Adamson, Arthur W., and Alice P. Gast. Physical Chemistry of Surfaces. 6th ed. New York, NY: Wiley-Interscience, 1997. ISBN: 9780471148739.
- 2. Israelachvili, Jacob N. Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems. 2nd ed. Burlington, MA: Academic Press, 1992.
- 3. DietmarMobius, Reinhard_Miller, Organized Monolayers and Assemblies: Structure, Processes and Function, One press, 2010

Assessment			
Attendance	0%	At least 75% class attendance is compulsory	
Presentation	20%		
Quiz	10%		
Seminars	0%		
Midterm Exam	20%	Written Exam	
Final Exam	50%	Written-Oral Exam	
Total	100%		
A agaggers and Cuitania	•	•	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry

University for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. •
- Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student **Discipline Regulations**

ECTS allocated based on Student Workload			
Activities	Number	Duration	Total Work load
Activities	Trumber	(hour)	(hour)
Course duration in class	14	3	42

Presentation	1	8	8
Self-study	14	3,5	49
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	12	10
Final Examination	1	3	3
Preparation for final exam	1	22	20
Total Workload	150		
Total Work load/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

department

Course Unit Title	Biochemical separations and laboratory
Course Unit Code	CHEM 5001
Type of Course Unit	Elective
Level of Course Unit	year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5

Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	Leyla Z.Vezirova
Name of Lecturer (s)	Leyla Z.Vezirova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, seminar
Language of Instruction	English
Prerequisites	-
Recommended Optional Programme Components	-

The goal of this course is to provide an insightful overview of the fundamentals of downstream processing for biochemical product recovery. Through reading assignments and homework sets, emphasis is given to fundamental modes of recovery and purification that the scientist and engineer are most likely to encounter in the laboratory and in industrial settings. However, guest lectures by distinguished researchers from both academia and industry in the field of biochemical engineering are also used to demonstrate new concepts and emerging technologies that are likely to benefit biochemical product recovery in the future.

Objectives of the Course:

Familiarity with some of the general aspects of process control and development, as well as general knowledge of chemical engineering principles including thermodynamics, chemical kinetics and transport processes, will be necessary for success in this course. Knowledge of mathematics, especially differential equations and basic statistics (i.e. the normal probability distribution) is necessary for dealing with the engineering aspects of the course. It is expected that students will be proficient in the use of Microsoft® Excel for spreadsheet calculations that are necessary for the completion of many homework assignments.

Lear	ningOutcomes		
At th	e end of the course the student will be able to	Assessment	
1	Make energy, entropy, and availability balances around a separation process.	1,3	
2	Understand the usefulness of equilibrium ratios (K-values and partition coefficients) for liquid and vapor phases.	1,2,3	
3	DeriveK-value expressions in terms of fugacity coefficients and activity coefficients.	1,2,3	
4	Explain phase equilibria in terms of Gibbs free energy, chemical potential, fugacity, fugacity coefficient, activity, and activity coefficient.	1,3	
5	Identify a buffer suited to maintain activity of a biological species at a target pH and evaluate effects of tempera-ture, ionic strength, solvent and static charge on pH, and effects of pH on solubility.	1,3	
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exam		
Cour	se's Contribution to Program		
		CL	
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.		

2					
1 -	Ability to execute, coordinate, implement, substantiate laboratory processes while		4		
		he experiments and to obtain and extract chemical compounds using	4		
	standard methods and syntheses.				
3	Ability to use the basics of mathematics, algorithmic principles and methods of		4		
		neering in the modeling, to design of chemical engineering systems,	-		
4		terpret data using statistical methods.			
4					
	are used in engineering and to carry out industrial and chemical processes, control				
E	them and to apply chemical engineering principles at designing of these processes.				
5	Ability to choose and use existing technologies, materials while undertaking pro tasks and solving these issues in chemical engineering and ability to eliminate				
		hat may occur in industrial and chemical processes or in laboratory	4		
	equipment.	that may occur in industrial and chemical processes of in laboratory			
6		sign systems, components, units and processes that meet the			
0		taking into account natural limitations such as economics, ecology,	4		
	security and security	-			
7	-	the language skills to exchange and obtain some knowledge gained			
	from the forei		1		
8		lyze the problem, to identify the basic requirements, to justify the idea	A.		
0	•	evaluate the results and to compare them.	4		
9		derstand professional, ethical, legal and security issues and the	2		
Í		s characteristic for engineering.	3		
10		rk productively in multidisciplinary groups, especially in projects			
10		ineering skills and to carry out all work in accordance with relevant	5		
		ons, standards, methods and guidelines.			
CL: (vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)			
	rse Contents				
		· · · · · · · · · · · · · · · · · · ·			
Wee	ek Chapter	Topics	Exam		
	[1] ch.1, p.	Separation Processes, Introduction to Bioseparations			
1	2-180 [2] ch.1, p.	Strategies for Dischamical Process Synthesis			
	2-35	Strategies for Biochemical Process Synthesis			
		Thermodynamics of Separation Operations			
		Discharging Descention Distanticut Applications			
2	[2] ch.2, p.	Biochemical Processing Overview, Biotechnology Applications.			
_	35-85	Seminar: Strategies for Biochemical Process Synthesis,			
		Biochemical Processing Overview, Biotechnology			
		Approximate Methods for Multicomponent, Multistage Separations			
1					
3	[2] ch.9, p.				
3	[2] ch.9, p. 359-413	.Cell Disruption			
3		.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection			
3	359-413	.Cell Disruption			
3	359-413 [3] ch.1, p.	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation			
	359-413	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection			
	359-413 [3] ch.1, p.	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent,			
4	[3] ch.1, p. 4-39	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent, Multistage Separations . Cell Disruption, Solid-Liquid Separation:			
	359-413 [3] ch.1, p.	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent, Multistage Separations . Cell Disruption, Solid-Liquid			
4	[3] ch.1, p. 4-39	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent, Multistage Separations . Cell Disruption, Solid-Liquid Separation:			
4	[3] ch.1, p. 4-39 [1] ch.4, p.333-400	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent, Multistage Separations . Cell Disruption, Solid-Liquid Separation: Chromatography (column chromatography processes) Chromatography (affinity chromatography)			
4	[3] ch.1, p. 4-39	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent, Multistage Separations . Cell Disruption, Solid-Liquid Separation: Chromatography (column chromatography processes)			
4	[3] ch.1, p. 4-39 [1] ch.4, p.333-400 [1] ch.5,	.Cell Disruption Solid-Liquid Separation: Solid/liquid separation equipment selection , Centrifugation Seminar: Approximate Methods for Multicomponent, Multistage Separations . Cell Disruption, Solid-Liquid Separation: Chromatography (column chromatography processes) Chromatography (affinity chromatography)			

7			Midterm
8	[3] ch.1, p. 4-39	Solid-Liquid Separation: Filtration	
9	[2] ch.3, p. 500-650 [3] ch.4, p. 140-190	Separations by barriers and solid agents Membrane and Filtration Applications Seminar: Solid-Liquid Separation: Filtration	
10	[3] ch.6, p. 239-316	Rotary Vacuum Filtration	
11	[2] ch.16,17,18 p. 650-730	Separations that involve a solid phase Seminar: Separations that involve a solid phase. Separation that involve a solid phase.	
12	[2] ch.17, p. 670-730	Crystallization, Desublimation, and Evaporation	
13	[1] ch.2, p. 65-156	Separations by phase addition or creation Adsorption and Stripping of Dilute Mixtures Seminar: Adsorption and Stripping of Dilute Mixtures	
14	[2] ch.19, p. 730-790	Mechanical separation of phases Mechanical Separations in Biotechnology	
15	[2] ch.15, p. 568-650	Ion Exchange and Electrophoresis Seminar: Ion Exchange and Electrophoresis	
16			Final
Deserve	mandad Sou		

Recommended Sources TEXTBOOK(S)

- 1. Frederick Dechow. Separation and Purification Technicues in Biotechnology, Wiliam, 1989
- 2. J.D._Seader,_Ernest J. Henley,D. Keith_Roper Seperation processes principes, Wiley,2008
- 3. Stephen_Tarleton,_Richard Wakeman Solidliquid seperation, Elsevier, 2005

Assessment			
Attendance	0%	At least 75% class attendance is compulsory	
Presentation	20%		
Quiz	10%		
Seminars	0%		
MidtermExam	20%	Written Exam	
FinalExam	50%	Written-Oral Exam	
Total	100%		
Assessment Criteria			

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry University for Undergraduate Studies

Course Policies

Attendance of the course is mandatory. ٠

• Late assignments will not be accepted unless an agreement is reached with the lecturer.

• Cheating and plagiarism will not be tolerated.

• Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

Activities	Number	Duration (hour)	TotalWorkload(hour)
Courseduration in class	14	3	42
Self-study	14	4	56
Tutorials	14	1	14
MidtermExamination	1	3	3
Preparation for midtermexam	1	9	9
FinalExamination	1	3	3
Preparation for final exam	1	21	21
Preparation for presentation	1	7	7
TotalWorkload	I	I	150
TotalWorkload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

Course Unit Title	Introduction to Biomedical Engineering
Course Unit Code	CHEM 5002
Type of Course Unit	Elective
Level of Course Unit	year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2

Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	Leyla Z.Vezirova
Name of Lecturer (s)	Leyla Z.Vezirova
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Programme Components	-

Introduction to Biomedical engineering applies engineering and science principles and methodologies to the analysis of biological and physiological problems and to the delivery of health care. Biomedical engineering encompasses a range of fields of specialization including bioinstrumentation, bioimaging, biomechanics, biomaterials, and biomolecular engineering. This course will provide an introduction to the interdisciplinary field of biomedical engineering. The molecular, cellular, physiological and engineering principles that govern the field will be covered. Applications will include biomaterials, tissue engineering, biomechanics, bioimaging, bioinstrumentation, bio-nanotechnology and artificial organs. Prerequisite: Junior standing or above.

Objectives of the Course:

Students should know more about biomedical engineering and how the development of technology, devices and instrumentation can enhance the quality and precision of health care for disease diagnosis, treatment, and prevention. Students should be able to use all accumulated knowledge for an understanding fundamental principles used by biomedical engineers in biomechanics, biomedical imaging and signal processing, cellular and molecular biology, biomaterials and tissue engineering, biomedical device design.

Lear	ning Outcomes	
At the	At the end of the course the student will be able to	
1	Explain and discuss what biomedical engineering is and what biomedical engineers do in their professional activities.	1,3
2	Understand fundamental principles used by biomedical engineers in biomechanics, biomedical imaging and signal processing, cellular and molecular biology, biomaterials and tissue engineering, biomedical device design.	1,2,3
3	Understand living systems/mechanisms through a systems approach.	1,2
4	Identify similarities and differences between engineering systems and living systems and between engineers and life scientists .	3
5	Increase their proficiency in oral and written communications	1,2,3

11000	ssment Methods: 1	. Final Exam, 2. Presentation, 3. Midterm exam	
Cou	rse's Contribution	to Program	
			CL
1	chemistry and che	omplex issues and tasks by using the principles of mathematics, physics, emical engineering.	4
2		e, coordinate, implement, substantiate laboratory processes while carrying ats and to obtain and extract chemical compounds using standard methods	3
3	engineering in the	basics of mathematics, algorithmic principles and methods of computer e modeling, to design of chemical engineering systems, analyze and ng statistical methods.	4
4	in engineering and	techniques, materials, skills and modern engineering tools which are used d to carry out industrial and chemical processes, control them and to apply ring principles at designing of these processes.	5
5	solving these issu	and use existing technologies, materials while undertaking project tasks and tes in chemical engineering and ability to eliminate malfunctions that may and chemical processes or in laboratory equipment.	4
6	• •	systems, components, units and processes that meet the requirements, taking ral limitations such as economics, ecology, security and social aspects.	4
7	Ability to use the foreign sources.	language skills to exchange and obtain some knowledge gained from the	1
8		e the problem, to identify the basic requirements, to justify the idea and the results and to compare them.	3
9	Ability to underst characteristic for	and professional, ethical, legal and security issues and the responsibilities engineering.	4
10	•	roductively in multidisciplinary groups, especially in projects requiring and to carry out all work in accordance with relevant laws, regulations, ls and guidelines.	3
CL: C	Contribution Level	(1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cour	se Contents		
Wee	k Chapter	Topics	Exam
1	[1] – ch. 1,2 p. 1-22, 32-39 [2] – ch.1.p. 16-32	What is biomedical engineering. Biomolecular principles: atoms, molecules, macromolecules	
2	[1] – c. 3, p. 82-126	Nucleic acids/ Gene. DNA technology and biomedical applications Seminar: Nucleic acids/ Gene. DNA technology and biomedical applications Molecular dogma of biology.RNA technology	
	[1] – c. 1,2 p.		

16			Final Exam
	274-349	cancer. Systems biology and biomedical engineering. Nanobiotechnology for biomedical engineering.	
15	[1] – ch. 12p. 432-460 [2] – ch. 6p.	Bioimaging Image processing and analysis. Drug delivery. Tissue engineering. Nanobiotechnology for biomedical engineeringSeminar: Engineering and immunity. Biomedical engineering and	
14	[1] – ch. 14,16 p.507- 530, 572-595	Engineering and immunity. Biomedical engineering and cancer. Systems biology and biomedical engineering. Biotechnologies for biomedical engineers	
	220-250	Seminar: Mechanical properties of the cell, The newest applications of research and technology for the development of the next generation of lab devices.	
13	[2] – ch. 5p.	Mechanical properties of the cell. Practical Example. Mechanical properties of the tissues and organs. Biomaterials. Biohybrid artificial organs	
12	[1] – ch. 10 p. 361-380	The newest applications of research and technology for the development of the next generation of lab devices. Mechanical properties of materials	
11	[1] – ch. 8 p. 300-330	Circulatory systems. Removal of molecules from the body Seminar: Engineering principles in biomedicine. Engineering balances. Circulatory systems. Removal of molecules from the body	
10	472-500 [2] – ch. 10p. 610-662		
,	[2] – ch. 11 p. 668-730 [1] –ch. 13p.	Seminar: Cell culture technologies and biomedical engineering, Fundamentals of signaling in biological systems and implications for biomedical engineering Engineering principles in biomedicine. Engineering balances.	
9	[1] – ch. 7 p. 247-280	Fundamentals of signaling in biological systems and implications for biomedical engineering Engineering principles in biomedicine Engineering balances	
8	[1] – ch. 12 p. 432-460	Cell culture technologies and biomedical engineering.	
7		signaming, cen growin, unrerentiation, promeration, apoptosis, death	Midterm
6	[2] – ch. 3 p. 76-130	Cell growth/differentiation/proliferation/apoptosis/death Seminar: Cellular structure and function. Cell-cell interactions and signalling, Cell growth/ differentiation/ proliferation/ apoptosis/ death	
5	[1] – ch. 5 p. 169-200	Cellular structure and function. Cell-cell interactions and signaling	
4	[1] – ch. 4 p. 141-168	Seminar: Molecular dogma of biology.RNA technology, Proteins/ Enzymes. Clinical applications of proteins and enzyme	

Recommended Sources TEXTBOOK(S)

- 1. W. Mark Saltzman,Biomedical Engineering: Bridging Medicine and Technology, Yale University (Cambridge Texts in Biomedical Engineering), 2009
- 2. John Enderle, Joseph Bronzino, Introduction to Biomedical Engineering Third Edition, Elsevier, 2007

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry

University for undergraduate studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated.
- Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration	Total
ricu vines	Tumber	(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Tutorials	14	1	14
Self-study	14	3,5	49
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	21	21
Total Workload			150
Total Workload/30(h)			150/30
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology"

Course Unit Title	Biochemical reactors and laboratory
Course Unit Code	CHEM 5003
Type of Course Unit	Elective
Level of Course Unit	
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2

Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	
Semester when the course unit is delivered	
Course Coordinator	Hamzayeva Nushaba
Name of Lecturer (s)	Hamzayeva Nushaba
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Laboratory,
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

Biochemical reactors (BCRs) are engineered treatment systems that use an organic substrate to drive microbial and chemical reactions to reduce concentrations of metals, acidity, and sulfate in MIWs. The ITRC Biochemical Reactors for Mining-Influenced Water technology guidance (BCR-1, 2013) and this associated Internet-based training provide an in-depth examination of BCRs; a decision framework to assess the applicability of BCRs; details on testing, designing, constructing and monitoring BCRs; and real world BCR case studies with diverse site conditions and chemical mixtures.

Objectives of the Course:

- The goals of this subject are Describe a BCR and how it works

Identify when a BCR is applicable to a site

Use the ITRC guidance for decision making by applying the decision framework

Improve site decision making through understanding of BCR advantages, limitations, reasonable expectations, regulatory and other challenges

Lea	Learning Outcomes		
At th	ne end of the course the student will be able to	Assessment	
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	1,3,4	
2	Ability to execute, coordinate, implement and substantiate laboratory processes while carrying out the experiments,	1,3,4	
3	Ability to obtain and extract chemical compounds using standard methods and syntheses.	1,2,3,4	

		1.0.4
4	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling and design of chemical engineering systems.	1,3,4
5	Ability to analyze and interpret data using statistical methods.	1,3,4
6	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering.	1,3
7	Abilityto carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	1,3
8	Ability to choose and use existing technologies, materials in chemical engineering while undertaking project tasks and solving these issues.	1,2,3,4
9	must be able to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	3,4
10	must be able to design systems, components, nodes, and processes that meet the requirements, taking into account natural limitations such as economics, ecology, and social aspects.	1,2,3,4
Ass	sessment Methods: 1. Final Exam, 2. Presentation, 3- Seminar, 4-Midterm	
Cou	urse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	3
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	4

7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.				
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.				
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.				
10	Ability to wo projects required with relevant	3			
		Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	•		
Cou	rse Contents				
Wee	k Chapter	Topics	Exam		
1	[1] CHAP.II	Introduction to the subject			
		Preliminary appasal of a reactor project			
2	[2] Chap.III	Seminar I - Preliminary appasal of a reactor project			
3 [3] Chap.III		Homogeneous and heterogeneous reactors			
	[2]	Batch reactors and continuous reactors			
4	[3] CHAP.VI	Seminar II - Batch reactors and continuous reactors			
5	5 ^[2] CHAP.V Variations in contacting pattern – semi-batch operation				
6 [1] Chap.VII		Influence of heat of reaction on reaction type Seminar III - Influence of heat of reaction on reaction type			
7	[3] Chap.IV	Chemical equilibria and chemical kinetics			
8			Midterm		
9 [2] Chap.VII		Calculation of equilibrium conversion Seminar IV - Calculation of equilibrium conversion			
10 [2] Chap. VI		Ultimate choice of reactor of reactor conditions			
11 [1] Influence of temperature. Activation energy		Influence of temperature. Activation energy			

	Chap.VIII	Seminar V	
12	[1] Chap.IV	Rate equations for constant-volume batch reactors	
13	[1] Chap.VII	Experimental determination of kinetic constants Seminar VI - Experimental determination of kinetic constants	
14	[3] Chap.V	General material and thermal balances	
15	[2] Chap.IX	Calculation of reaction time Seminar VII- Calculation of reaction time	
16			Final

Recommended Sources TEXTBOOK(S)

1. J.F.Richardson, D.G., Peacock, Chemical&biochemical reactors & process control.Pearson,2000

2.Smith, J. Chemical Engineering Kinetics. 3rd ed. New York, NY: McGraw-Hill, 1981.

3.Bailey, J. E., and D. F. Ollis. Biochemical Engineering Fundamentals. 2nd ed. New York, NY: McGraw-Hill, 1986.

4.A. Ollis. Biochemical Engineering Fundamentals. 2nd ed. New York, NY: McGraw-Hill, 1986. ISBN: 9780070032125.

Assessment

Attendance	-	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	-	
Laboratories	-	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	
Assessment Criteria		

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial University for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload				
Activities	Number	Duration	Total	
Activities	number	(hour)	Workload(hour)	
Course duration in class	14	3	42	
Presentation	1	8	8	
Tutorials	14	1	14	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	9	9	
Final Examination	1	3	3	
Preparation for final exam	1	18	18	
Self-study	14	4	56	
Total Workload	150			
Total Workload/30(h)	150/30			
ECTS Credit of the Course	5			

Chemical engineering (CHEN) program, "Industrial safety and labour protection" department

Course Unit Title	Bioprocess Safety
Course Unit Code	CHEM 5004
Type of Course Unit	Elective
Level of Course Unit	-
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2

Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	Amina Huseynova
Name of Lecturer (s)	Amina Huseynova
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program	-
Components	
Commendation the second second	

Biological hazards (biohazards) present the Occupational Health and Safety (OHS) professional with complex challenges. Many and varied biohazards may result from workplace exposure to organisms, or substances produced by organisms, that threaten human health. You will be introduced to safety hardware, sources and prediction of toxic releases, potential harmful effects of biological hazards in the workplace, as well as hazard identification. The course provides the introductory framework to the practices and principles to working with infectious biological agents. Focus is placed on an introduction to infectious agents, assessment of biological hazards and risks, overview of laboratory safety, risk mitigation via personal protective equipment and biosafety cabinets, program management, and biosafety guidelines and regulations.

Objectives of the Course:

The field of biotechnology is developing very rapidly and needs skilled engineers with bioprocess engineering background to design, build, control, and operate bioreactors and fermenters. This course provides students with basic concepts and prepares them to meet the challenges of the new and emerging biotechnology industry.

Learning Outcomes

At th	e end of the course the student will be able to	Assessment
1	Obtainanunderstandingabout howbiological hazards affectusphysicallyand how hazards can be quantified.	1,2,3
2	Identify certain diseases caused by prions, viruses, bacteria, fungi and parasites	1
3	Understand what the risk factors are when working with a biological agent	1,2,3
4	Understand how an infection can be prevented by modifying the agent or how it is handled	1,2,3
5	Know why personal protective equipment (PPE) is used, and what PPE is appropriate for the work area	1,2
6	Understand when a risk group may not correspond to the biosafety level of a facility	1,2
Ass	essment Methods: 1. Final Exam, 2. Presentation, 3 Midterm exam	
Cour	rse's Contribution to Program	

			CL				
1	Ability to so	lve complex issues and tasks by using the principles of mathematics,	3				
	physics, che	emistry and chemical engineering.					
2	Ability to e	execute, coordinate, implement, substantiate laboratory processes	3				
	while carrying out the experiments and to obtain and extract chemical						
	compounds	using standard methods and syntheses.					
3	Ability to use the basics of mathematics, algorithmic principles and methods of						
	computer er	ngineering in the modeling, to design of chemical engineering					
	systems, and	alyze and interpret data using statistical methods.					
4	Ability to u	se the techniques, materials, skills and modern engineering tools	4				
	•	sed in engineering and to carry out industrial and chemical processes,					
		n and to apply chemical engineering principles at designing of these					
	processes.						
5	*	hoose and use existing technologies, materials while undertaking	3				
-	-	s and solving these issues in chemical engineering and ability to	-				
		alfunctions that may occur in industrial and chemical processes or in					
	laboratory e						
6		lesign systems, components, units and processes that meet the	4				
-	-	taking into account natural limitations such as economics,	·				
	—	curity and social aspects.					
7		e the language skills to exchange and obtain some knowledge gained	1				
,	Ability to use the language skills to exchange and obtain some knowledge gained I from the foreign sources.						
8		nalyze the problem, to identify the basic requirements, to justify the	3				
0	•	idea and critically evaluate the results and to compare them.					
9		inderstand professional, ethical, legal and security issues and the	5				
,	responsibilities characteristic for engineering.						
10	-	ork productively in multidisciplinary groups, especially in projects	3				
10	•	gineering skills and to carry out all work in accordance with relevant	5				
		tions, standards, methods and guidelines.					
CL: Con	-	(1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)					
	Contents	(11 very 20 m, 2. 20 m, 51 modelate, 11 mgm, 51 very mgm)					
Week	-	Topics	Exam				
Week	Chapter		Exam				
1	[2]	Introduction to biosafety. The Need for Bioprocess Safely					
-	Chapter1 p.p.1-15	Management Systems.					
	p.p.1 10	Legislative basis of safety at workplace. Laws, regulations and					
	[1]	standards.					
2	Chapter4						
	p.p.37-79	Seminar1. Bioprocess Engineering Information Transfer and					
		Management Practices					
3	[2] Chapter 2	An overview of the bioprocessing industry. Bioprocessing's History					
5	Chapter 2						
	p.p.17-20	The bioprocess lifecycle. General Biosafety Recommendations for					
А	[2]	Large Scale Work					
4	Chapter2 p.p.22-45						
	I D D //-47	Seminar2. Development Phase: Laboratory and Pilot Plant					

5	[1] Chapter26	Biohazards. Kinds of biohazard agents.		
	p.p.483-497			
6	[2] Chapter3	Bioprocessing safety management practices. Develop and Document a System to Manage Bioprocess Safety Hazards.		
	p.p.48-54	Seminar3. Collect Bioprocess Hazard Information. Identify Bioprocess Safety Hazards		
7			Midterm	
8	[2] Chapter3 p.p.54-67	Existing Management Systems. Establishing a Bioprocess Safety Management SystemSeminar 4. Select a Management System Model Based Upon Your Needs. Identifying the Elements that Apply to Your Operations		
9	[2] Chapter3 p.p.67-69	Biosafety Training for the Workforce		
10	[2] Chapter3 p.p.69-76	Investigating incidents. A Generic Procedure for Initial Biohazard Incident Response		
11	[2] Chapter4 p.p.79-80	Seminar5 . Applying Behavior-Based Safety to BioprocessesKey Considerations for Assessing Risk to ManageBioprocess Safety		
12	[2] Chapter4 p.p.80-85	Bioprocess risk assessment. Three Types of Assessment.		
13	[1] Chapter28 p.p.513-536	Seminar6. Types of bioprocess risk assessmentPersonal Protective Equipment. Hearing protection. Respiratory protection. Hand, finger and arm protection.		
14	[2] Chapter5	Bioprocess design considerations. Heating, Ventilation, and Air Conditioning Aspects		
	p.p.89-115	Seminar7. Physical Plant Design. Building and site security.		
15	[2] Chapter5 p.p.116-143	Bioprocess unit operations. General equipment design considerations.		
16			Final	
Recomm	nended Sour	ces	1	
 Brauer, R., <u>Safety and Health for Engineers</u>, 2nd Edition, John Wiley & A John Wiley, Guidelines for Process Safety in Bioprocess M Facilities. Center for Chemical Process Safety & sons, inc., publicat of Chemical Engineers, Inc. (2011). 				
Assessn				
Attendar		0% At least 75% class attendance is compulsory		
Presentation		20%		
Quiz		10%		
Seminar		0%		
Midtern	n Exam	20% Written Exam		

Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Guidelines of Azerbaijan State University of Oil and Industry for undergraduate studies.

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration	Total
Activities		(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	8	8
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	20	20
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Course Unit Title	History of Azerbaijan	
Course Unit Code	HIST 5001	
Type of Course Unit	Elective	
Level of Course Unit	_ year CHEN program	
National Credits	0	
Number of ECTS Credits Allocated	4	
Theoretical (hour/week)	2	
Practice (hour/week)	1	
Laboratory (hour/week)	0	
Year of Study		
Semester when the course unit is delivered		

Chemical engineering (CHEN) program, "Social disciplines" department

Course Coordinator	Tahir R. JAFIYEV
Name of Lecturer (s)	Tahir R. JAFIYEV
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program	-
Components	

This course will cover History of Azerbaijan since ancient periods till nowadays, focusing on political, economic, military, agrarian, etnic, demografic processes which happened in the history of Azerbaijan nation.

Objectives of the Course:

The course is intended to instill a sense of patriotism, to expand and deepen students' knowledge of the history and historical analysis as well as provide them with the ability to critically read the sophisticated literature of the discipline and understand. We will focus on acquiring by them the skills of objective assessment of historical issues. The main objective of the course is delivering to students problems:

- of formation of Azerbaijan nation

- historical stages of statehood of Azerbaijan

- nowadays socio-political, economical prosperity of Azerbaijan

Lea	rning Outcomes	
At th	he end of the course the student will be able to	Assessment
1	Understand the historical processes on History of Azerbaijan happened from ancient period to nowadays theoretically	1,2,3
2	Critically analyze and evaluate the historical processes in given definit period of history	2
3	Critically analyze and evaluate the historical processes in Ancient and Middle Ages	3
4	Read historical literature	1,2,3
Ass	essment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam	
Cou	urse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry chemical engineering	and 2

experiments and to obtain and extract chemical compounds using standard methods and syntheses. 2 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes, control them and to apply chemical engineering and themical processes of the themical processes of the methods and solving these in chemical engineering and themical processes that meet the requirements, taking into and chemical processes or in laboratory equipment. Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as conomics, ecology, security and social aspects. Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. Ability to analyse the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. Ability to work productively in multidisciplinary groups, especially in projects requirements, standards, methods and guidelines. CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents We chapter design Accent states in the territory of Azerbaijan history. Prehistoric period in the taritory of Azerbaijan. Ancient states in the territory of azerbaijan in the carly diversed as a part of the Median and Achamanid Empire. The state of Atropatena. Ancient Azerbaijan relations in the territory of Azerbaijan in the astribution scenes, as part of the Sasania, culture and religion. Spreading of						
he modeling to design of chemical engineering systems, analyze and interpret data using statistical methods. 3 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering minciples at designing of these processes, control them and to apply chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 5 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to use the results and to compare them. 3 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to uverk productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 11 Ability to uverk roductively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 10 Ability to uverk productively of X2 consign. Accient Azerbaijan Ability a net tererivory of Azerbaijan. Tribal units and init	2			2		
engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 4 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 3 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 3 8 Ability to analyse the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 4 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 Curtribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Contents We ek Chapter Topics Intervity of Azerbaijan. Tribal units and initial state formations in the territory of p.13- 61 Arcerbaijan in the 3 ³⁴ - in the 9 ³⁶ ce	3	the modeling, to design of chemical engineering systems, analyze and interpret data using statistical				
1 these issues in chemical processes or in laboratory equipment. 3 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 3 9 Ability to unalyse the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 4 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Contents We Chapter Topics Exam 11 1,2,3,4. in the territory of Azerbaijan. Tribal units and initial state formations in the territory of period, period, in the 3 rd - in the 9 rd centuries Azerbaijan in the 3 rd - in the 9 rd centuries 2 <td< td=""><td>4</td><td>engineering a</td><td>nd to carry out industrial and chemical processes, control them and to apply chemical</td><td>4</td></td<>	4	engineering a	nd to carry out industrial and chemical processes, control them and to apply chemical	4		
account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to analyse the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 4 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents We Chapter Topics Exam 1 1,2,3,4. in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient Atarbaijan. Ancient Atarbaijan. Tribal units and initial state formations in the territory of Azerbaijan in the 3 rd - in the 9 th centuries Azerbaijan in the 3 rd - in the 9 th centuries 2 [1] Azerbaijan in the 3 rd - in the 9 th centuries Azerbaijan in the 3 rd - in the 9 th centuries 2 [1] Foreing in the 3 rd - in the 9 th centuries Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread	5	these issues in	n chemical engineering and ability to eliminate malfunctions that may occur in industrial	3		
sources. 1 8 Ability to analyse the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 4 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 5 Contents We Chapter Topics 1 1,2,3,4. ancient Azerbaijan 1 1,2,3,4. in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the Median and Achamarid Empire. The state of Atropatena. Ancient Albania. 2 [1] Azerbaijan in the 9 th centuries 2 [1] Spreading of Christianity in Albania. Azerbaijan by Sassanids, culture and religion. Spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement. 2 [1] Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan in the surplice. Ancient Albania.	6			3		
evaluate the results and to compare them. 4 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 4 Course Contents We chapter Topics ek Chapter Topics 11 1,2,3,4. in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Accent Albania. 11 5.6. p.13- 61 Azerbaijan in the 3 rd - in the 9 th centuries Azerbaijan in the 3 rd - in the 9 th centuries 2 [1] Azerbaijan in the 3 rd - in the 9 th centuries 2 [1] Azerbaijan in the 3 rd - in the 9 th centuries 2 [1] Theoretical, methodological issues and sources of Azerbaijan bistory. Prehistoric period islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement. 11 5.6. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars.	7	-	the language skills to exchange and obtain some knowledge gained from the foreign	1		
10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents We ek Chapter 11 Ancient Azerbaijan Topics 12 Ancient Azerbaijan Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Ariba units and initial state formations in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the Median and Achamanid Empire. The state of Atropatena. Ancient Albania. 2 [1] Spreading of Christianity in Albania. Azerbaijan of Azerbaijan by Sasanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan spart of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement. 2 Seminar topic: Ancient Azerbaijan Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan in the arbity in Albania. Azerbaijan as part of the reliations in Azerbaijan of Leverbaijan. 11 5.6. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.	8	•		4		
requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 4 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 5 Contents We ek Chapter Topics 1 11 Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient Aterbaijan. The state of Atropatena. Ancient Albania. 1 1,2,3,4. Azerbaijan. Ancient states in the territory of Azerbaijan. Mannea. Azerbaijan as part of the Median and Achamanid Empire. The state of Atropatena. Ancient Albania. 1 1,2,3,4. Azerbaijan in the 3 rd - in the 9 th centuries 2 [1] 5,6. Spreading of Christianity in Albania. Azerbaijan as part of the Sassanian Empire. Early feudalism relations in Azerbaijan, occupation of Azerbaijan by Sassanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement. 2 Seminar topic: Ancient Azerbaijan 1,2,3,4. Seminar topic: Ancient Azerbaijan in the territory of Azerbaijan bistory. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of	9			3		
Course Contents We ek Chapter Topics Exam 1 [1] Ancient Azerbaijan Exam 1 1,2,3,4. In the territory of Azerbaijan. Tribal units and initial state formations in the territory of p.13- 61 Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the Median and Achamanid Empire. The state of Atropatena. Ancient Albania. 2 [1] Azerbaijan in the 3 rd - in the 9 th centuries Azerbaijan, occupation of Azerbaijan by Sassanias, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement. 2 [1] Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan.	10	requiring en	ngineering skills and to carry out all work in accordance with relevant	4		
We ekChapterChapterTopicsExam1[1]Ancient Azerbaijan Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the Median and Achamanid Empire. The state of Atropatena. Ancient Albania.2[1] 5,6. p.62-138Azerbaijan in the 3 rd - in the 9 th centuries Azerbaijan, occupation of Azerbaijan as part of the Sassanian Empire. Early feudalism relations in Azerbaijan, occupation of Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.2[1] 1,2,3,4.Seminar topic: Ancient Azerbaijan in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan in the territory of Azerbaijan is part of the caliphate. Spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.	CL:	Contribution	Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)			
ekChapterTopicsExamek[1]Ancient AzerbaijanExam1[1]Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the Median and Achamanid Empire. The state of Atropatena. Ancient Albania.2[1] 5.6. p.62-138Azerbaijan in the 3 nd - in the 9 th centuries Azerbaijan, occupation of Azerbaijan by Sassanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.2[1] 1,2,3,4.Seminar topic: Ancient Azerbaijan in the territory of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of in the territory of Azerbaijan in the territory of Azerbaijan in the arby middle ages, as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.	Cou	rse Contents	S			
1[1] 1,2,3,4. p.13- 61Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the Median and Achamanid Empire. The state of Atropatena. Ancient Albania.2[1] 5,6. p.62-138Azerbaijan in the 3 rd - in the 9 th centuries Azerbaijan, occupation of Azerbaijan by Sassanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.2[1] 1,2,3,4.Seminar topic: Ancient Azerbaijan Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan in the arly middle ages, as part of the Sassanian Empire. Early feudalism relations in Azerbaijan, occupation of Azerbaijan by Sassanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.		Chapter	Topics	Exam		
2[1] 5,6. p.62-138Azerbaijan in the early middle ages, as part of the Sassanian Empire. Early feudalism relations in Azerbaijan, occupation of Azerbaijan by Sassanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of Khurramid's movement.2[1] 1,2,3,4.Seminar topic: Ancient Azerbaijan In the territory of Azerbaijan. Tribal units and initial state formations in the territory of	1	1,2,3,4.	Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the			
[1] Theoretical, methodological issues and sources of Azerbaijan history. Prehistoric period1,2,3,4. in the territory of Azerbaijan. Tribal units and initial state formations in the territory of	2	5,6.	Azerbaijan in the early middle ages, as part of the Sassanian Empire. Early feudalism relations in Azerbaijan, occupation of Azerbaijan by Sassanids, culture and religion. Spreading of Christianity in Albania. Azerbaijan as part of Arabic Caliphate. spread of Islam. Arab-Khazar wars. Resettlement and tax policy. Administration. Explanation of			
Median and Achamanid Empire. The state of Atropatena. Ancient Albania.						
3 [1] Azerbaijan in Renascence epoch (the 9 th - in the early of the 13 th centuries)			in the territory of Azerbaijan. Tribal units and initial state formations in the territory of Azerbaijan. Ancient states in the territory of Azerbaijan.Mannea.Azerbaijan as part of the			

	7,8.	The formation of Azerbaijan nation. Feudal States of Azerbaijan in IX-first half of XI	
	p.139-181	centuries. Independent feudal states - Shirvanshahs, Sajjids, Salarids, Shaddadids,	
		Ravvadids. The Seljug Empire. The State of Atabegs. Azerbaijan in the period of	
		developed feudalism.	
	[1]	Azerbaijan in 13 th -15 th centuries	
	9,10,11.	Mongol rule in Azerbaijan. Timurid State. Shirvanshahs State in XIV-XV centuries.	
	p.182-235	Feudal states of Azerbaijan in the XV century. The states of Jalairi, Karakoyunlu and	
4	p.162-255	Aghgoyunlu, Shirvanshahs.	
		Seminar topic: Azerbaijan in Renascence epoch (the 9 th - in the early of the 13 th centuries)	
	[1]	The formation of Azerbaijan nation. Feudal States of Azerbaijan in IX-first half of XI	
	7,8.	centuries. Independent feudal states - Shirvanshahs, Sajjids, Salarids, Shaddadids,	
	p.139-181	Ravvadids. The Seljug Empire. The State of Atabegs. Azerbaijan in the period of	
	1	developed feudalism.	
		Azerbaijan Safavid State (16 th -17 th centuries)	
	[1]	Establishment of Safavids state. Internal and foreign policy of Shah Ismail I. The reign	
	[1]	period of Shah Tahmasib I. Safavids-Ottoman wars and Azerbaijan. Socio-economic life	
5	12,13,14.	of Azerbaijan in XVI century. Fight for liberation against the Ottoman. The reign of	
	p.252- 325	Shah Abbas I and his reforms. Ottoman-Safavids wars in the first half of XVII century.	
		Istanbul II (Sarab) and Marand, Gasry-Shirin treaties.	
		Azerbaijan in the first half of 18 th century	
		The social-political situation in Azerbaijan after signing of Gasri-Shirin treaty (1639).	
	[1]		
		Popular uprising against Safavid rule or its policies. Dividing the territory of Azerbaijan	
	15.	between Russia, Ottoman Empire and Safavid. Becoming of Nadir khan the main figure	
	p.334-344	of these processes. Afshar as one of the Turkic tribes. Nadir's personality and his	
		coming to the throne. His victories, raids, establishing of Empire. The political situation	
		after his assassination.	
6		Seminar topic: Azerbaijan Safavid State (16 th -18 th centuries)	
	[1]	Establishment of Safavids state. Internal and foreign policy of Shah Ismail I. The reign	
	[1]	period of Shah Tahmasib I. Safavids-Ottoman wars and Azerbaijan. Socio-economic life	
	12,13,14,	of Azerbaijan in XVI century. Fight for liberation against the Ottoman. The reign of	
	15.	Shah Abbas I and his reforms. Ottoman-Safavids wars in the first half of XVII century.	
		Istanbul II (Sarab) and Marand, Gasry-Shirin treaties. The social-political situation in	
	p.252- 325	Azerbaijan after signing of Gasri-Shirin treaty (1639). Popular uprising against Safavid	
	p.334-344	rule or its policies. Dividing the territory of Azerbaijan between Russia, Ottoman Empire	
	•	and Safavid. Becoming of Nadir khan the main figure of these processes. Afshar as one	
		of the Turkic tribes. Nadir's personality and his coming to the throne.	
	[1]	The Azerbaijani khanates	
-		The khanates of Northern Azerbaijan. Foreign policy. Socio-economy life in this period.	
7	16.	Foreign states aspirations to establish their dominion in the Caucasus. Aga Mahammad	
	p. 345-382	Shah Gacar's attacks.	
8			Midterm
9	[1]	Azerbaijan in 19 th century	
-	17,18.		
	17,10.		

	m 202 404	Division of Azerbaijan territorias between Dussie and Iron Treaty of Culister (1012) The	
	p.383-404	Division of Azerbaijan territories between Russia and Iran. Treaty of Gulistan (1813). The	
		second Russian-Iran war. Turkmenchay Treaty (1828).	
		Resettlement policy. Northern Azerbaijan in 30-50th years of XIX century. Forming of	
		military-curfew regime. Uprisings against this governance system and liquidation of it.	
		Reforms of 40-60th years. Formation of capitalist relations. Peasantry reform of 1870.Oil	
		industry.Culture.	
		Seminar topic: Azerbaijan in 19 th century	
		Division of Azerbaijan territories between Russia and Iran. Treaty of Gulistan (1813). The	
	[1]	second Russian-Iran war. Turkmenchay Treaty (1828).	
	17,18.	Resettlement policy. Northern Azerbaijan in 30-50th years of XIX century. Forming of	
	p.383-404	military-curfew regime. Uprisings against this governance system and liquidation of it.	
		Reforms of 40-60th years. Formation of capitalist relations. Peasantry reform of 1870.Oil	
		industry. Development of oil monopolies.Culture.	
		Azerbaijan in the first decades of 20th century	
		Impact of I Russian revolution(1905-1907) to the political process in Azerbaijan. Sosial-	
		democratic organization "Hummet". Activity of Azerbaijan intelligency on formation of	
	[1]	national consciousness. Armenian-Muslim slaughter in 1905-1906. National parties as	
	[1]	"Difai", "Ittifag-ul-Muslimin", "Mudafia", "Musavat". All-Russian Congresses.	
10	19,20.	Participation of deputies from Azerbaijan in State Dumas of Russian Empire. Azerbaijan	
	p.405-421	in the interests of world countries during WW I. Heroes of war. Tendency of	
		democratization after the February revolution (1917). Activities of Transcaucasian	
		Comissariat and Seym. Baku Soviet attempts on weakening the social base of Musavat	
		party. Replacing the idea of territorial autonomy by the idea of Independence.	
	[1]	The Azerbaijan Democratic Republic	
	[1]	Proclamation of the ADR. The state construction and foreign policy of ADR. Invasion of	
	21.		
11	p.422- 431	XI Red army.	
	[1]	Seminar topic: The Azerbaijan Democratic Republic	
	21.	Proclamation of the ADR. The state construction and foreign policy of ADR. Invasion of	
	p.422- 431	XI Red army.	
		Azerbaijan in the 20 ^s and 30 ^s of the 20 th century	
		The Soviet state construction in Northern Azerbaijan. The political groups and discrepancy	
	[1]	in the leadership of Azerbaijan. The formation of MKAO (Mountainous or Nagorno	
12	22.	Karabakh Autonomous Oblast) and Nakhichevan ASSR (Autonomous Soviet Socialist	
	p.432 - 450	Republic).	
	p.+32 - 430	Soviet National Policy in Azerbaijan, bloody repressions of 30s years. Policy of	
		industrialization and collectivization. Religion and cultural revolution	
13	[1]	Azerbaijan during World War II (1939-1945) Participation of Northern Azerbaijan in World War II, science and culture. Formation of	
13	23.	Participation of Northern Azerbaijan in World War II, science and culture. Formation of	
	p.451 - 461	national divisions, population of the Az.SSR at the battle and home fronts, role of Baku	
	-	oil.	

		S.C.Pishavari. N	ational gover	nment and its reforms. Tabriz State University. Clash of		
	foreign interests in Iran. Suppression of National Liberation Movement of Southern					
		Azerbaijan. Political immigrants from S.Azerbaijan.				
-		ring World War II (1939-1945)				
		-	U	rbaijan in World War II, science and culture. Formation of		
	[1]	-		of the Az.SSR at the battle and home fronts, role of Baku		
	23.	oil.	s, population	of the <i>FL</i> .55K at the battle and nonie fronts, for of baka		
	p.451 - 461		ational gover	nment and its reforms. Tabriz State University. Clash of		
	p.451 - 461		-	pression of National Liberation Movement of Southern		
		-	-	nts from S.Azerbaijan.		
				World War II. Socio-economic development and political		
				ijan (1946-1991)		
	[1]		-	and political conditions in Northern Azerbaijan. New		
14				g of strong political situation, deportation of Western		
14	24.	-		and by Soviet leadership in 40-50s years XX century. The		
	p.462-470	-	54-1959 years	in Azerbaijan (Imam Mustafayev, Sadiq Rahimov, Mirza		
		Ibrahimov).	10.50 10.60			
				and Haydar Aliyev as the first secretary of Central Committee		
		of Azerbaijan Co				
	[1]	The Independent				
	[1]	Sounding ideas of independence from Freedom Square. Black January. The Constitutional				
	25.			91, legal-democratic state building, about reforms, struggle endence of the Republic of Azerbaijan, successful relations		
15	p.471-503	-				
15		with foreign countries.Oil strategy. Seminar topic: The Independent Azerbaijan Republic				
	[1]	_	-	ent Azerbaijan Republic ce from Freedom Square. Black January. The Constitutional		
	[1]	-				
	25.	Act of the 18th C				
	p.471-503	-		endence of the Republic of Azerbaijan, successful relations		
		with foreign cou	ntries.Oil strat	tegy.		
16					Final	
Recon	nmended Sourc	es		ł		
TEXT	BOOK(S)					
		1. Ismail be	v Zardahli Tl	he history of Azerbaijan. (from ancient times to the present	dav) London	
		2014.	<i>, 20100011.</i> 11	a motory of recompany from ancient times to the present	auy), London,	
Asse	ssment	2017.				
Atter	Attendance 0% At least 75% class attendance is compulsory					
	Presentation 2		20%			
Quiz			10%			
Seminars 0		0%				
Midt	Midterm Exam 20% Written Exam					
Final	Final Exam 50% Written-Oral Exam					

Total	100%				
Assessment Criteria					
Final grades are determined acc	ording to the	Academic Regulations of Azerbaijan State Oil and Industry			

University Guidelines for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration	Total
Activities	Number	(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	7	7
Tutorials	14	1	14
Self-study	14	3,5	49
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	18	18
Total Workload	120		
Total Workload/30(h)	120/30		
ECTS Credit of the Course	4		

Chemical engineering (CHEN) program, "Management and economy of energy and

petrochemical areas" department

Course Unit Title	Energy Economics
Course Unit Code	ECON 5001
Type of Course Unit	Elective
Level of Course Unit	year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1

Laboratory (hour/week)	0
Year of Study	
Semester when the course unit is delivered	
Course Coordinator	Rashid A. JABRAILOV
Name of Lecturer (s)	Rashid A. JABRAILOV
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program	-
Components	
Course decomintion:	•

Energy demand and energy supply. Energy policies. Distribution of energy resources and its use around the world. Energy market structure. Energy pricing and taxation. Factors that influence energy prices. Energy demand analysis and forecasting the demand. Renewable energy. Energy and the environment. Future of energy markets. Global energy challenges.

Objectives of the Course:

The course is intended to lead students to an appreciation of the role of the energy industry in the global

economy and the issues associated with managing resource based economies. The main objective of the

course is to help students to understand:

- the potential role of energy resources to fulfill our energy demand

- forecasting our future energy demand

- how energy markets operate

- issues of resource management

Learning Outcomes

At ti	At the end of the course the student will be able to		
1	theoretically and empirically describe the demand and supply of energy, and how these interact in a market.	1,2,3	
2	analyze the effects of energy and environmental policies on the supply and demand of different types of energy	1,2,	
3	understand the need for government policies in various energy markets.	3	
4	Make simple forecast about energy demand and use demand analysis models	1,2	
5	Describe current energy market trends and relate current conditions to historical markets	2,3	

Cou	rse's Contribut	ion to Program	
			CL
1		e complex issues and tasks by using the principles of mathematics, try and chemical engineering	2
2	carrying out the	tte, coordinate, implement, substantiate laboratory processes while experiments and to obtain and extract chemical compounds using ds and syntheses.	2
3	computer engin	he basics of mathematics, algorithmic principles and methods of eering in the modeling, to design of chemical engineering systems, erpret data using statistical methods.	3
4	are used in engi	he techniques, materials, skills and modern engineering tools which neering and to carry out industrial and chemical processes, control ally chemical engineering principles at designing of these processes.	4
5	tasks and solvin	be and use existing technologies, materials while undertaking project ag these issues in chemical engineering and ability to eliminate at may occur in industrial and chemical processes or in laboratory	3
6		n systems, components, units and processes that meet the aking into account natural limitations such as economics, ecology, cial aspects.	3
7	Ability to use the form the foreign	he language skills to exchange and obtain some knowledge gained n sources.	1
8		se the problem, to identify the basic requirements, to justify the idea valuate the results and to compare them.	4
9	•	rstand professional, ethical, legal and security issues and the characteristic for engineering.	3
10	requiring engine	productively in multidisciplinary groups, especially in projects eering skills and to carry out all work in accordance with relevant is, standards, methods and guidelines.	4
CL: 0	Contribution Lev	el (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cour	rse Contents		
Wee	k Chapter	Topics	Exam
1	[1] chapter 2,	Introduction to Energy Economics	
	pp.2-5		
2	[1] 1	Energy supply and energy demand	
3	[1]	Energy policy of the Republic of Azerbaijan	
4	[1]	World distribution of oil resources and production.	
	1		

		Seminar 1:	
5	[1]	Energy market structure: Oil, OPEC, world oil and energy security	
	3,4		
6	[1]	Price formations in competitive markets, energy pricing	
0	4,5		
7	[1]	Energy Taxes, Subsidies, and Social Welfare Market Structure.	
7	4,5		
8			Midterm
9	[1]	Forecasting the demand for oil and gas	
9	6		
10	[1]	Energy demand analysis models	
10	6		
11	[1]	Renewable Energy: types, market structures and pricing, impact at	
11	7	grid level, energy storage as the future of renewables	
12	[1]	Risk management in oil and gas industry.	
12	8		
13	[1]	Energy and the environment: Climate change, impact on energy	
15	8,9	markets.	
14	[1]	Future of international energy markets: market forces and	
14	11	government intervention	
15	[1]	Global energy challenges	
15	12		
16			Final

Recommended Sources

TEXTBOOK(S)

1. Subhes C. Bhattacharyya. Energy Economics: Concepts, Issues, Markets and Governance. Springer 2011, 645 p.

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	
Assessment Criteria		<u> </u>

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industry University Guidelines for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the • Azerbaijan State Oil and Industrial University General Student Discipline Regulations

		Duration	Total
Activities	Number	(hour)	Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Tutorials	14	1	14
Self-study	14	4	56
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload	L		150
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN), "Technology of organic substances and high molecular compounds" department

Course Unit Title		Structure and Properties of the Polymers	
Course Unit Code		CHEM 5006	
Type of Course Unit		Elective	
Level of CourseUnit		-	
National Credits		0	
Number of ECTS Credi	its Allocated	5	
Theoretical (hour/week))	2	

Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	PhD Narmina Guliyeva
Name of Lecturer (s)	PhD Narmina Guliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face
Language of Instruction	English
Prerequisites	-
Recommended Optional Programme	-
Components	

Plastics are very broad category of materials. They include most elastomers (such as rubber), adhesives (such as epoxies and acrylics), fibers (such as Nylon and Polyesters), and traditional engineering plastics. Plastics is more common name for Polymers. Polymers have been under development since the eighteenth century. In the last few decades, polymers have been replacing other materials in an increasing number of products. It is therefore important for modern materials engineers to understand the fundamental concepts of engineering polymers and be able to select, modify, and develop the proper polymer for a certain performance.

Objectives of the Course:

The main objective is to introduce polymers as an engineering material and emphasize the basic concepts of their nature, production and properties. Polymers are introduced at three levels; namely, the molecular level, the micro level, and macro-level. Through knowledge of all three levels, student can understand and predict the properties of various polymers and their performance in different products. The course also aims at introducing the students to the principles of polymer processing techniques and considerations of design using engineering polymers.

Learning Outcomes					
At the	At the end of the course the student will be able to Assessment				
1	Polymers from the Molecular viewpoint including basic concepts in organic chemistry, polymerization processes, thermoplastics and thermosets, and copolymers.	1,3,4			
2	Know the structure of polymeric substances	1,2,3,4			
3	List the types of polymerization reactions	1,2,3			
4	Know the structure and physical properties of polymers	1,3			
5	Be able to synthesize polymers	1,3,4			

ours	e's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	3
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	4
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.	5
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	4
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.	4
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	1
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.	3
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.	3
10	Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in	3

	guidelines.	with relevant laws, regulations, standards, methods and		
		el (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)		
	e Contents	m :		
Week	Chapter	Topics	Exam	
1	Textbook 1 Chapter 1,2	History of polymers. Structure of macromolecules. Stereochemistry of polymers.		
2	Textbook 1 Chapter 2	Polymeric solids and their properties: macromolecular conformation in the amorphous phase, molecular orientation, glass transition, polymeric crystals, crystallization processes, mechanical properties of amorphous and semi-crystalline polymers.		
		Sem: History of polymers. Structure of macromolecules. Stereochemistry of polymers.		
3	Textbook 1 Chapter 2	lymeric solids and their properties: polymer structure – operty relationships, crystalline and amorphous combinations/		
4	Textbook 1 Chapter 3	Molecular weight of polymers: solubility, average molecular weight values, osmometry, small-angle x-ray scattering, mass spectrometry, viscometry.		
		Sem: Polymeric solids and their properties: polymer structure – property relationships, crystalline and amorphous combinations/		
5	Textbook 1 Chapter 4	Electric properties: theory, electric measurements, optical property tests, chemical resistance, spectronic characterization of polymers, thermal analysis, thermal property tests, flammability		
6	Textbook 1 Chapter 4	Surfacecharacterization, amorphousregiondeterminations, particle size, measurement of adhesionSem: Electric properties: theory, electric measurements, opticalproperty tests, chemical resistance, spectronic characterization ofpolymers, thermal analysis, thermal property tests, flammability		
7			Midterm	

		Rheology and physical tests Rheology, typical stress–strain behavior, stress–strain	
8	Textbook 1 Chapter 5	relationships, specific physical tests Sem : Electric properties: theory, electric measurements, optical property tests, chemical resistance, spectronic characterization of polymers, thermal analysis,thermal property tests, flammability	
9	Textbook 1 Chapter 5	Rheology and physical tests Rheology, typical stress–strain behavior, stress–strain relationships, specific physical tests	
10	Textbook 1 Chapter 10	Naturally occurring polymers Polysaccharides, cellulose, cellulose-regenerating processes, esters and ethers of cellulose, starch, other polysaccharides Sem : Naturally occurring polymers	
		Polysaccharides, cellulose, cellulose-regenerating processes, esters and ethers of cellulose, starch, other polysaccharides	
11	Textbook 1 Chapter 10	Naturally occurring polymers Proteins, nucleic acids,naturally occurring polyisoprenes,polymer structure, genetic engineering, DNA profiling	
		Inorganic-organic polymers, inorganic reaction mechanisms, condensation organometallic polymers, coordination polymers, addition polymers, sol-gel	
12	Textbook 1 Chapter 11	Sem : Naturally occurring polymers Proteins, nucleic acids,naturally occurring polyisoprenes,polymer structure, genetic engineering, DNA profiling	
13	Textbook 1 Chapter 12	Inorganic polymers, silicates, silicon dioxide (amorphous), silicon dioxide (crystalline forms)—quartz forms,silicon dioxide in electronic chips, polymeric carbon—diamond,polymeric carbon—graphite,ceramics	

14	Textbook 1 Chapter 13	Fillers and reinforcements for polymers, theory of the effect of fillers, fillers, reinforcements, coupling agents, composites, nanocomposites Sem : Inorganic polymers, silicates, silicon dioxide (amorphous), silicon dioxide (crystalline forms)—quartz forms,silicon dioxide in electronic chips, polymeric carbon—diamond,polymeric carbon—graphite,ceramics		
15	Textbook 1 Chapter 14	Plasticizers, stabilizers, flame retardants, and other additives, plasticizers, antioxidants, heat stabilizers, ultraviolet stabilizers, flame retardants, flame-retardant mechanisms, colorants, curing agents, antistatic agents (antistats), chemical blowing agents, compatibilizers		
16			Final	
	Recommended Sources TEXTBOOK(S)			

- 1. Charles E. Carraher, Jr. Sixth Edition, Polymer Chemistry p.902
- 2. N.G. McCrum, C.P. Buckley, C.B. Bucknall *Principles of Polymer Engineering*, Oxford Science Publications, second edition, 1997
- Structure and Properties of Polymers by <u>Pingsheng He</u>, Alpha Science Intl Ltd (September 30, 2013)

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and İndustry University

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.

• Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the

Azerbaijan State Oil and Industrial	University General Studen	t Discipline Regulations
-------------------------------------	---------------------------	--------------------------

ECTS allocated based on Student Workload			
Activities	Number	Duration (hour)	Total Workload (hour)
Course duration in class	14	3	42
Preparation for Presentation	1	24	24
Self-study	14	1	14
Tutorials	14	2	28
Midterm Examination	1	3	3
Preparation for midterm exam	1	12	12
Final Examination	1	3	3
Preparation for final exam	1	24	24
Total Workload	150/30		
Total Workload/30(h)	5		
ECTS Credit of the Course			5

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

Course Unit Title	Introduction to nanomaterials
Course Unit Code	CHEM 5007
Type of Course Unit	Elective
Level of Course Unit	year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1

Laboratory (hour/week)	0
Year of Study	
Semester when the course unit is delivered	
Course Coordinator	Vagif Baghiyev
Name of Lecturer (s)	Vagif Baghiyev
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

Introduction to nanomaterials. Methods of synthesis of nanomaterials. Nanomaterials characterization. Properties and applications of nanomaterials. Nanosheets. Nanofibers. Metal nanoparticles. Ceramic nanoparticles. Polymer nanoparticles. Carbon nanostructures

Objectives of the Course:

Students will acquire knowledge on classification and general knowledge on different types of nanomaterials, general up to date methods of fabrication of nanomaterials, the most important physical methods applied for characterization of nanomaterials, properties of nanomaterials which makes them stand out of macromaterials of the same composition caused by nanodimensions, metal, ceramic and polymer nanostructure, nanocomposites. They will acquire skills to solve the problems connected with production and application of nanomaterials in industry.

Learning Outcomes

At th	e end of the course the student will be able to	Assessment
1	Apply concepts of physical and colloidal chemistry to solve the most important problems which arise during nanomaterial research	1,,3
2	Clearly understand the organization of nanomaterials research. Be able to apply this knowledge in order to conduct research	3
3	Know and distinguish fields of industry where different types of nanomaterials are and can be applied and know the trends of cutting edge nanomaterial research.	1,3
4	Knowing main physical methods used for characterization of nanomaterials. Clearly understand their main physical principles. Be able to choose appropriate physical method of characterization for certain type of nanomaterial.	1,3,
5	Being able to find information necessary for conducting any field of nanomaterial research essment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exam	2
	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematical physics, chemistry and chemical engineering.	5, 3

2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 2 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 1 4 Ability to use the techniques, materials, skills and modern engineering systems, analyze and interpret data using statistical methods. 5 5 Ability to use the techniques, materials, skills and modern engineering and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 7 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engincering. 3 8 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to work productively in multidisciplinar					
standard methods and syntheses. Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 1 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate maffunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 3 7 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 8 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 1 12.1 Introduction to nanoma	2	Territy to enceute, coordinate, imprement, substantiate incortatory processes while			
3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 1 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate maffunctions that may occur in industrial and chemical processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the tole project tasks and critically explores. 3 8 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 1 12.1 Introduction to nanomaterials: Colloidal foundations of nanomaterials 2 10 Ability to work productive		• •			
computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 1 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 1 [2] Introduction to nanomaterials: Colloidal foundations of nanomaterials 2 1 [2] <	3	•			
analyze and interpret at au sing statistical methods. analyze and interpret data using statistical methods. 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate maffunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant asv, regulations, standards, methods and guidelines. 2 1 121 Introduction to nanomaterials. Colloidal foundations of nanomaterials 2 10 Ability to work productively and updet and acurity of nanomaterials science and appication.Classification.	5			1	
4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to work productively in multidisciplinary groups (specially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 11 [2] Introduction to nanomaterials. Colloidal foundations of nanomaterials 2 in 2.3 [1]		· · ·		-	
are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 2 9 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulation. 2 1 [12] Introduction to nanomaterials. History of nanomaterials ilooks] Exam 2 1.2.3 (11) Science behind nanomaterials:Colloidal foundations of nanomaterials il	4	÷			
Bet used in the unique china in the carging of the segments processes. 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations. Law and and momaterials. History of nanomaterials science and appication. Classification. 2 1 [21] Introduction to nanomaterials: Colloidal foundations of nanomaterials 2 2 1.2.3[1] Science behind nanomaterials: Colloidal foundations of nanomaterials	4	•		5	
5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 2 9 Ability to uwerk productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to foot to nanomaterials. History of nanomaterials science and appication.Classification. 2 2 1.2.3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 3 1.2.3 [3] 4 5.6.7 [11] Fabrication of Nanomaterials 4				5	
tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to use the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 10 Ability is clence behind nanomaterials. Colloidal foundations of nanomaterials 2 1 1,2 Introduction to nanomaterials:Colloidal foundations of nanomaterials 2 1 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 3 1,2,3 [3] Fabrication of Nanomaterials		them and to a	pply chemical engineering principles at designing of these processes.		
malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 10 Ability to Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Course Contents Exam 1 1 12 Introduction to nanomaterials. Colloidal foundations of nanomaterials 2 2 1.2.3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 3 1.2.3[1] Fabrication of Nanomaterials 2 3 1.2.3[1] Fabrication of nanomaterials	5	Ability to cho	pose and use existing technologies, materials while undertaking project		
malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents 2 1.2 Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 1.2.3(1) Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1.2.3(1) Fabrication of Nanomaterials 4 5.6.7(1) Fabrication of nanomaterials 5 5.6.7(1) Fabrication of nanomaterials		tasks and so	lving these issues in chemical engineering and ability to eliminate	4	
equipment. equipment. 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents Veek Chapters [books] Topics Exam 1 [12] Introduction to nanomaterials. Colloidal foundations of nanomaterials 2 3 1.2.3[3] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 3 1.2.3[3] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 3 1.2.3[3] Fabrication of Nanomaterials		malfunctions	that may occur in industrial and chemical processes or in laboratory	-	
requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 3 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to use the language skills to exchange and obtain some knowledge gained and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Exam Course Contents 1 [2] Introduction to nanomaterials. History of nanomaterials science and application.Classification. 2 1.2.3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1.2.3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5.6.7[1] Fabrication of Nanomaterials 5 5.6.7[1] Fabrication of nanomaterials 6 4[1].12[2] Nanomaterials charachterization 7 4[1].12[6		esign systems components units and processes that meet the		
security and social aspects.17Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.18Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.18Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.29Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.310Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines.2CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)2Exam1[2] 1,21Introduction to nanomaterials. History of nanomaterials science and appication.21.2.31[1] 1,231.2.31[1] 1,231.2.31[1] 1,2,3[3]45.6.71[1] 4[2]55.6.71[1] 4[2]64[1],12[2]8Immontaterials charachterization74[1],12[2] Nanomaterials charachterization74[1],12[2]8Immontaterials charachterization				3	
7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Contents 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 1.2.3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1.2,3 [3] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5.6.7 [1] Fabrication of Nanomaterials 5 5.6.7 [1] Fabrication of nanomaterials 6 4[1],12[2] Nanomaterials charachterization 7 4[1],12[2] Nanomaterials charachterization 8 Midterm		-			
from the foreign sources. 1 8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Course Contents 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 1.2.3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1.2.3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5.6.7 [1] Fabrication of Nanomaterials 5 5.6.7 [1] Fabrication of nanomaterials 6 4(11,12[2] Nanomaterials charachterization 7 4(1).12[2] Nanomaterials charachterization 8 Image: Ima	7	•	*		
8 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Contents Week Chapters [books] Topics 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 1.2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1.2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5.6,7 [1] Fabrication of Nanomaterials 5 5.6,7 [1] Fabrication of nanomaterials 6 4[1].12[2] Nanomaterials charachterization 7 4[1].12[2] Nanomaterials charachterization 8 Midterm	/			1	
and critically evaluate the results and to compare them. 2 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Course Contents week Chapters [books] Topics 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 1.2,3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1.2,3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5.6,7[1] Fabrication of Nanomaterials 5 5.6,7[1] Fabrication of nanomaterials 6 4[1],12[2] Nanomaterials charachterization 7 4[1],12[2] Nanomaterials charachterization 8 Midterm			-		
9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Course Contents Week Chapters [books] Topics 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 2 1.2,3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 3 1,2,3[3] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 4 5,6,7[1] Fabrication of Nanomaterials 4 4[2] 5 5,6,7[1] Fabrication of nanomaterials 4 4[2] 6 4[1],12[2] Nanomaterials charachterization 4 7 7 4[1],12[2] Nanomaterials charachterization 4 4[2]	8	•		2	
responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Course Contents Week Chapters [books] Topics 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. 2 1.2,3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1,2,3[1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5.6,7[1] Fabrication of Nanomaterials 5 5.6,7[1] Fabrication of nanomaterials 6 4[1],12[2] Nanomaterials charachterization 7 4[1],12[2] Nanomaterials charachterization 8 I Monomaterials charachterization		and critically	evaluate the results and to compare them.		
responsibilities characteristic for engineering. 2 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) 2 Contents Week Chapters [books] Topics 10 12.3 [1] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. Exam 2 1.2.3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 3 1.2.3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 2 4 5.6.7 [1] Fabrication of Nanomaterials 2 5 5.6.7 [1] Fabrication of nanomaterials 2 6 4[1],12[2] Nanomaterials charachterization 2 7 4[1],12[2] Nanomaterials charachterization 3 8 1 Midterm 4	9	Ability to ur	nderstand professional, ethical, legal and security issues and the	3	
requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents Week Chapters [books] Topics Exam 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. Exam 2 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 1 3 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 1 4 5.6,7 [1] Fabrication of Nanomaterials 1 1 5 5.6,7 [1] Fabrication of nanomaterials 1 1 4 4[2] Fabrication of nanomaterials 1 1 5 5.6,7 [1] Fabrication of nanomaterials 1 1 6 4[1],12[2] Nanomaterials charachterization 1 1 7 4[1],12[2] Nanomaterials charachterization 1 1 8 Midterm 1 1		responsibilitie	es characteristic for engineering.	5	
requiring engineering skills and to carry out all work in accordance with relevant laws, regulations, standards, methods and guidelines. 2 CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents Week Chapters [books] Topics Exam 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. Exam 2 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 1 3 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 1 4 5.6,7 [1] Fabrication of Nanomaterials 1 1 5 5.6,7 [1] Fabrication of nanomaterials 1 1 4 4[2] Fabrication of nanomaterials 1 1 5 5.6,7 [1] Fabrication of nanomaterials 1 1 6 4[1],12[2] Nanomaterials charachterization 1 1 7 4[1],12[2] Nanomaterials charachterization 1 1 8 Midterm 1 1	10	Ability to w	ork productively in multidisciplinary groups, especially in projects		
Iaws, regulations, standards, methods and guidelines.CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)Course ContentsWeekChapters [books]TopicsExam1 $\begin{bmatrix} 2 \\ 1,2 \\ 1,2 \end{bmatrix}$ Introduction to nanomaterials. History of nanomaterials science and appication.Classification.Exam2 $1,2,3[1]$ Science behind nanomaterials: Colloidal foundations of nanomaterialsImage: Colloidal foundations of nanomaterials3 $1,2,3[1]$ Science behind nanomaterials: Colloidal foundations of nanomaterialsImage: Colloidal foundations of nanomaterials4 $5,6,7[1]$ Fabrication of NanomaterialsImage: Colloidal foundations of nanomaterials5 $5,6,7[1]$ Fabrication of NanomaterialsImage: Colloidal foundations of nanomaterials6 $4[1],12[2]$ Nanomaterials charachterizationImage: Colloidal foundation7 $4[1],12[2]$ Nanomaterials charachterizationImage: Colloidal foundation8Image: Colloidal foundationImage: Colloidal foundation		•		2	
CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Course Contents Week Chapters [books] Topics Exam 1 [2] Introduction to nanomaterials. History of nanomaterials science and appication.Classification. Exam 2 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 3 1,2,3 [1] Science behind nanomaterials:Colloidal foundations of nanomaterials 4 5,6,7 [1] Fabrication of Nanomaterials 5 5,6,7 [1] Fabrication of nanomaterials 6 4[1],12[2] Nanomaterials charachterization 7 4[1],12[2] Nanomaterials charachterization 8 Midterm					
Course ContentsWeekChapters [books]TopicsExam1[2] 1,2Introduction to nanomaterials. History of nanomaterials science and appication.Classification.Exam21,2,3 [1] 1,2,3 [3]Science behind nanomaterials:Colloidal foundations of nanomaterialsExam31,2,3 [3]Science behind nanomaterials:Colloidal foundations of nanomaterialsExam45,6,7 [1] 4 [2]Science behind nanomaterialsExam55,6,7 [1] 4 [2]Fabrication of NanomaterialsExam64[1],12[2]Nanomaterials charachterizationExam74[1],12[2]Nanomaterials charachterizationExam	$CL \cdot C$	•			
WeekChapters [books]TopicsExam1 $\begin{bmatrix} 2 \\ 1,2 \end{bmatrix}$ Introduction to nanomaterials. History of nanomaterials science and appication.Classification.Image: Classification of nanomaterials science and appication.Classification.Image: Classification of nanomaterials science and appication.Classification.2 $1,2,3[1]$ Science behind nanomaterials:Colloidal foundations of nanomaterialsImage: Classification of nanomaterials3 $1,2,3[3]$ Science behind nanomaterials:Colloidal foundations of nanomaterialsImage: Classification of nanomaterials4 $5.6,7[1]$ Fabrication of NanomaterialsImage: Classification of nanomaterialsImage: Classification of nanomaterials5 $5.6,7[1]$ Fabrication of nanomaterialsImage: Classification of nanomaterialsImage: Classification of nanomaterials6 $4[1],12[2]$ Nanomaterials charachterizationImage: Classification of nanomaterialsImage: Classification of nanomaterials7 $4[1],12[2]$ Nanomaterials charachterizationImage: Classification of nanomaterialsImage: Classification of nanomaterials8Image: Nanomaterials charachterizationImage: Nanomaterials charachterizationImage: Nanomaterials charachterization					
Week[books]TopicsExam1 $\begin{bmatrix} 2 \\ 1,2 \end{bmatrix}$ Introduction to nanomaterials. History of nanomaterials science and appication.Classification.2 $\begin{bmatrix} 1,2,3 \\ 1,2 \end{bmatrix}$ Science behind nanomaterials:Colloidal foundations of nanomaterials3 $\begin{bmatrix} 1,2,3 \\ 1$	Cour			1	
[books]Introduction to nanomaterials. History of nanomaterials science and appication.Classification.1 $\begin{bmatrix} 1 & 1 \\ 1,2 & 2 \end{bmatrix}$ 2 $\begin{bmatrix} 1,2,3 & [1] \\ 1,2,3 & [3] & 2 \end{bmatrix}$ 3 $\begin{bmatrix} 1,2,3 & [1] \\ 1,2,3 & [3] & 2 \end{bmatrix}$ 4 $\begin{bmatrix} 5,6,7 & [1] \\ 4 & 2 & 2 \end{bmatrix}$ 5 $\begin{bmatrix} 5,6,7 & [1] \\ 4 & 2 & 2 \end{bmatrix}$ 6 $4 & [1],12 & [2] & 1 \end{bmatrix}$ 8Image: Science behave the structure of the structu	Wee	K –	Topics	Exam	
11,2appication.Classification.21,2,3 [1] 1,2,3 [3]Science behind nanomaterials:Colloidal foundations of nanomaterials31,2,3 [1] 1,2,3 [3]Science behind nanomaterials:Colloidal foundations of nanomaterials31,2,3 [1] 1,2,3 [3]Science behind nanomaterials:Colloidal foundations of nanomaterials45,6,7 [1] 4 [2]Fabrication of Nanomaterials55,6,7 [1] 4 [2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8		[books]			
1,2application. Classification.21,2,3 [1] 1,2,3 [3]Science behind nanomaterials: Colloidal foundations of nanomaterials31,2,3 [1] 1,2,3 [3]Science behind nanomaterials: Colloidal foundations of nanomaterials45,6,7 [1] 4 [2]Fabrication of Nanomaterials55,6,7 [1] 4 [2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Midterm	1	[2]			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1,2	appication.Classification.		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.2.3 [1]	Science behind nanomaterials: Colloidal foundations of nanomaterials		
31,2,3 [1] 1,2,3[3]Science behind nanomaterials:Colloidal foundations of nanomaterials45,6,7 [1] 4[2]Fabrication of Nanomaterials55,6,7 [1] 4 [2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Midterm	2				
31.2.3[3]45.6.7 [1] 4[2]Fabrication of Nanomaterials55.6.7 [1] 4[2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Midterm					
$\begin{array}{c c c c c c c } & & & & & & & & & & & & & & & & & & &$	3		Science behind nanomaterials: Colloidal foundations of nanomaterials		
44[2]Fabrication of nanomaterials55,6,7 [1] 4 [2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Midterm		1,2,3[3]			
4[2]Fabrication of nanomaterials55,6,7 [1] 4 [2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Midterm		5,6,7 [1]	Fabrication of Nanomaterials		
55,6,7 [1] 4 [2]Fabrication of nanomaterials64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Image: Market for the second	4	4[2]			
5 4 [2] 6 4[1],12[2] 7 4[1],12[2] Nanomaterials charachterization 8 Midterm			Eabrication of nanomaterials		
64[1],12[2]Nanomaterials charachterization74[1],12[2]Nanomaterials charachterization8Midterm	5				
7 4[1],12[2] Nanomaterials charachterization 8 Midterm					
8 Midterm	6	4[1],12[2]	Nanomaterials charachterization		
	7	4[1],12[2]	Nanomaterials charachterization		
9 Properties and applications of nanomaterials	8			Midterm	
	Q		Properties and applications of panomaterials		
	,		repeties and approacons of national criats		

10	7,8,9,10,1	Properties and applications of nanomaterials	
10	1[2]		
11	7,8,9,10,1	Metal nanostructures: synthesis, structure and application	
11	1[2]		
12	7,8,9,10,1	Ceramic nanostructures: synthesis, structure and application	
12	1[2]		
13	7,8,9,10,1	Polymer nanostructures: synthesis, structure and application	
15	1[2]		
14	7,8,9,10,1	Carbon nanostructures, Nanotubes, Nanosheets	
14	1[2]		
15	2(2)	Nanocomposites	
16			Final exam
D			

Recommended Sources

TEXTBOOK(S)

1. Zhen Guo, Li Tan, Fundamentals and Applicationsof Nanomaterials, ARTECH HOUSE, 2009.

2. Dieter Vollath, Nanomaterials: An Introduction to Synthesis, Properties, and Applications-2nd edition/, Wiley-VCH Verlag GmbH & Co. KGaA, 2013

3. Gerardo Palazzo, Colloidal foundations of nanoscience- Debora Berti, Elsevier, 2014

Assessment				
Attendance	0%	At least 75% class attendance is compulsory		
Presentation	20%			
Quiz	10%			
Seminars	0%			
Midterm Exam	20%	Written Exam		
Final Exam	50%	Written-Oral Exam		
Total	100%			
Assessment Criteria Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial University for Undergraduate Studies				
Course Policies				
• Late assignments will not be accepted unless an agreement is reached with the lecturer.				
• Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State				
Oil and Industrial University General Student Discipline Regulations				

ECTS allocated based on Student Workload			
Activities	Number	Duration	Total
		(hour)	Workload(hour)

Course duration in class	14	3	42
Presentation	1	10	10
Tutorials	14	1	14
Self-study	14	4	56
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload			150
Total Workload/30(h)		150/30	
ECTS Credit of the Course		5	

Chemical engineering (CHEN) program, "Chemistry and inorganic substances technology"

Course Unit Title	Environmental chemodynamics
Course Unit Code	CHEM 5009
Type of Course Unit	Elective
Level of Course Unit	year CHEN program
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1

Year of StudyYear of StudySemester when the course unit is deliveredCourse CoordinatorCourse CoordinatorVagif BaghiyevName of Lecturer (s)Vagif BaghiyevName of Assistant (s)-Mode of DeliveryFace to Face, Seminar.
Course Coordinator Vagif Baghiyev Name of Lecturer (s) Vagif Baghiyev Name of Assistant (s) -
Name of Lecturer (s) Vagif Baghiyev Name of Assistant (s) -
Name of Assistant (s) -
Mode of DeliveryFace to Face, Seminar.
Language of Instruction English
Prerequisites -
Recommended Optional Program Components -

This course will supply the student with an understanding of the processes that control the movement of organic and inorganic contaminants in the atmosphere, hydrosphere and lithosphere. With this understanding we will then consider the monitoring and prediction of the environmental behavior of some potentially toxic contaminants in biotic and abiotic matrices. The course material will provide the student with historical perspective and awareness of historical and current problems through examples. The key outcome will be an understanding of methods and models to predict the fate of chemicals released to the environment. The course will be of interest to students interested in environmental sciences, specifically to toxicology students, so that they can conduct exposure predictions and assessments as part of the overall risk assessment process. The course is designed to compliment existing courses in environmental risk assessment and toxicology.

Objectives of the Course:

- I. Present the fundamental mechanisms of physical, chemical, and biological interactions underlying environmental processes.
- II. Present the fundamental principles applied in the analysis, design, modeling, and operation of engineered and natural solutions for environmental engineering.
- III. Expose students to the complex interaction between environmental problems and the needs of society..

Learning Outcomes				
At th	e end of the course the student will be able to	Assessment		
1	Describe environmental chemodynamics and transport.	1,2,3		
2	Describe abiotic transformations of chemicals.	1,2, 3		
3	Identify the characteristics of quantitative toxicology.	1,2,3		
4	Describe the origin and occurrence of smog and acid rain.	1,2,3		
5	Explain earth's energy balance and the greenhouse effect.	1,2		
6	Identify major greenhouse gases.	1,2		
7	Explain the food chain and bioaccumulation of substances.	1,2		
8	Describe the classes, exposure and risks of the major chemical carcinogens.	1,2		
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exam			
Cour	se's Contribution to Program			
		CL		

1	•	lve complex issues and tasks by using the principles of mathematics, nistry and chemical engineering.	3	
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.		2	
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.		1	
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.		5	
5	tasks and so malfunctions equipment.	bose and use existing technologies, materials while undertaking project living these issues in chemical engineering and ability to eliminate that may occur in industrial and chemical processes or in laboratory	4	
6	requirements	esign systems, components, units and processes that meet the , taking into account natural limitations such as economics, ecology, social aspects.	5	
7	Ability to use from the fore	e the language skills to exchange and obtain some knowledge gained ign sources.	1	
8	•	bility to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.		
9		nderstand professional, ethical, legal and security issues and the es characteristic for engineering.	3	
10	requiring eng laws, regulati	ork productively in multidisciplinary groups, especially in projects gineering skills and to carry out all work in accordance with relevant ions, standards, methods and guidelines.	2	
		vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)		
Cour	se Contents			
Wee	k Chapters (books')	Topics	Exam	
1	1	Introduction, Overview, Error In Measurement Of Environmental Quantities, Chemical Concentrations, Activities, Mass Balance, Sources, Sinks, System Characterization		
2	2	Basic Environmental Chemical Principles	1	
3	3	The Fugacity Approach to Mass Transport and MTCs		
4	4	Flux Equations for Mass Transport Processes across Interfaces		
5	5	Estimating Molecular Diffusivities in Environmental Media		
6	6	Deposition from the Atmosphere toWater and Soils with Aerosol Particles and Precipitation		
7	7	Mass Transfer between the Atmosphere and Plant Canopy Systems		
8			Midterm	
0				

10	10	Deposition and Resuspension of Particles and the Associated. Chemical	
		Transport across the Sediment–Water Interface	
11	12	Diffusive Chemical Transport acrossWater and Sediment	
		Boundary Layers	
12	13	Bioturbation and Other Sorbed-Phase Transport Processes in	
	_	Surface Soils and Sediments	
13	15	Dispersion and Mass Transfer in Groundwater Near-Surface	
		Geologic Formations	
14	16	Dust Resuspension and Chemical Mass Transport from Soil to	
	10	Atmosphere	
15	19	Chemical Dynamics in Urban Areas	
		-	
16			Final exam

Recommended Sources

TEXTBOOK(S)

1. Louis J. Thibodeaux, Environmental Chemodynamics: Movement of Chemicals in Air, Water, and Soil, 2nd Edition, CRC Press, 1996, 624 Pages

2. Louis J. Thibodeaux, Donald Mackay. Handbook of chemical mass transport in the environment, CRC Press, 2011, 596 pages

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial

University for Undergraduate Studies

Course Policies

- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	9	9
Tutorials	14	1	14
Self-study	14	4	56

Midterm Examination	1	3	3
Preparation for midterm exam	1	8	8
Final Examination	1	3	3
Preparation for final exam	1	17	17
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Chemistry and Inorganic substances technology"

department

Course Unit Title	Chemical Technologies-1
Course Unit Code	CHEM 5009
Type of Course Unit	Elective
Level of Course Unit	-
National Credits	-
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2

Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	Tahmina C. Taghiyeva
Name of Lecturer (s)	Tahmina C. Taghiyeva
Name of Assistant (s)	-
Mode of Delivery	Lectures, Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

The subject "Chemical technologies-1" includes general, physico-chemical and technological fundamentals of production processes, technologies and properties of the main types of materials and products of the silicate industry, metal, technical gases and salts production.

Objectives of the Course:

The purpose of studying the subject "Chemical technologies-1" is to teach students in the field of production processes, technology and properties of the main types of materials and products of the silicate industry; the format of students practical and research skills of the properties of raw materials and finished products and to train specialists to manage these industries

Lear	ning Outcomes	
At th	e end of the course the student will be able to	Assessment
1	have an extended knowledge on individual technologies in silicate and other inorganic materials industry	1, 3
2	keep abreast with the scientific literature, new technologies and new developments	2, 3
3	maintain and control industrial or chemical processes and assist with their design using chemical engineering principles	2, 3
4	understand physico-chemical fundamentals of production processes of the silicate industry	1, 2
	and other inorganic materials such as salts, metal and technical gases	
5	research the properties of raw materials	1, 2, 3
Asse	ssment Methods: 1. Final Exam, 2. Presentation, 3. Midterm exam	
Cou	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.	2

3	engineering in the mod data using statistical m		2
4	in engineering and to c	arry out industrial and chemical processes, control them and to apply principles at designing of these processes.	5
5	solving these issues in	se existing technologies, materials while undertaking project tasks and chemical engineering and ability to eliminate malfunctions that may chemical processes or in laboratory equipment.	5
6	taking into account naspects.	ems, components, units and processes that meet the requirements, atural limitations such as economics, ecology, security and social	4
7	foreign sources.	uage skills to exchange and obtain some knowledge gained from the	1
8	critically evaluate the r	problem, to identify the basic requirements, to justify the idea and esults and to compare them.	4
9	characteristic for engin	•	3
10	engineering skills and standards, methods and		3
CL: C	Contribution Level (1: V	ery Low, 2: Low, 3: Moderate, 4: High, 5: Very High)	
Cours	se Contents		
Week	Chapter	Topics	Exam
Week	Chapter [2], chapter 3, p. 195- 196 [2], chapter1, p. 657- 662	Topics Production of technical oxygen and nitrogen. Raw material. Technology of the process and technological parameters. Importance of oxygen and nitrogen, their application as raw materials for chemical productions.	Exam
	[2], chapter 3, p. 195- 196 [2], chapter1, p. 657-	Production of technical oxygen and nitrogen. Raw material. Technology of the process and technological parameters. Importance of oxygen and	Exam
1	 [2], chapter 3, p. 195- 196 [2], chapter 1, p. 657- 662 [1] , chapter 5, p. 129- 139 [2] , chapter 2, p. 596- 	 Production of technical oxygen and nitrogen. Raw material. Technology of the process and technological parameters. Importance of oxygen and nitrogen, their application as raw materials for chemical productions. Manufacturing of synthesis gas, water gas by stream conversion of methane; production of carbon dioxide. Seminar 1: Technical gases (synthesis gas, water gas). Nitrogen, oxygen, 	Exam

	1	Soming 2. Fields of amplication of most new materials for manufacturing	
		Seminar 2: Fields of application of urea; raw materials for manufacturing of ammonia. Fertilizers.	
5	[5], p. 50-54	Manufacturing of elementary Ca and Si. Raw material. Technology of the pr and technological parameters. Calcium silicide.	
6	[2], chapter 9, p. 755- 757	NaCl production from rock salt and lake deposited salt. Raw material. Technology of the process and technological parameters. Seminar 3: Miscellaneous calcium compounds. Salts, sources of NaCl.	
7			Midterm exam
8	[2],, chapter 5, p. 80- 86	 Production of bromine and iodine. Raw material. Technology of the process and technological parameters. Seminar 4: Chemical properties of Si, Br, I; their production and fields of application. 	
9	[2], chapter 5, p. 89- 90	Aluminum manufacturing. Raw material. Technology of the process and technological parameters. Duralumin.	
10	[3], chapter 18, p. 299-324	Gold and silver production. Raw material. Technology of the process and technological parameters. Seminar 5: Sources of precious metals. Metallurgy. Production of alumo-silicate catalyst.	
11	[4], chapter 7, p. 295- 297	Manufacturing of cast iron and ferrosilicium alloys. Raw material. Types of cast iron. Characteristics of the iron-casting process. Blast furnace. The difference between cast iron and steel. Cast iron and the future.	
12	[2], chapter 7, p.712- 727 [5], p. 1-7, 331-334	Cement. Concrete manufacturing. Raw material. Technology of the process and technological parameters. Seminar 6: Ferrous metals, their manufacturing and application. Blast furnace. Cement and concrete manufacturing. Colored cements.	
13	[2],, chapter 7, p. 727- 728; [5], p. 191-193	Production of gypsum binders. Raw material. Technology of the process and technological parameters.	
14	[2], chapter 8, p. 735- 753 [5], p. 193-195	Glass manufacturing. Composition of glass. Different kinds of glass. Raw material. Technology of the process and technological parameters. <i>Seminar 7: Methods of glass manufacture. Gypsum binders, gypsum plasters.</i>	
15	[2],, chapter 6, p. 691- 711	Ceramics production. Raw material. Technology of the process and technological parameters.	

16			Final exa		
Recom	nended Sources				
TEXT	BOOK(S)				
1.	Jacob A. Moulıjn Mıchıel	Makkee Anr	nelies E, Chemical Process Technology. Second Edition Van Die		
	2013				
2.	Georgo T.Austin, Chemic	al Technolog	gy III. Fifth edition. Elsevier, 1969		
3.	Rose T.K., <u>The precious n</u>	<u>ietals compri</u>	sing gold, silver and platinum,		
4.	Coulson and Richardson's	s, Chemical e	engineering design. Fourth edition, Butterworth-Heinemann, 1999		
5.	Ivan Odler, Special inorga	nic cements.	. Modern concrete technology. CRC Press,1656		
Assess	ment				
Attend	ance	0%	At least 75% class attendance is compulsory		
Present	tation	20%			
Quiz		10%			
Semina	ars	0%			
Midter	m Exam	20%	Written Exam		
Final E	Exam	50%	Written-oral Exam		
Total		100%			
Assess	ment Criteria	<u> </u>			
Final g	rades are determined accord	ling to the Ac	cademic Regulations of ASOIU for Undergraduate Studies		
Course	e Policies				
•	Attendance of the course	is mandatory			
•	Late assignments will not	be accepted	unless an agreement is reached with the lecturer.		
•	Students cannot use calcu	lators during	the exam.		
•	Cheating and plagiarism v	vill not be to	lerated. Cheating will be penalized according to the Azerbaijan St		
	Oil and Industrial Univers	sity General S	Student Discipline Regulations		

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload		1	150

Total Workload/30(h)	150/30
ECTS Credit of the Course	5

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology"

Course Unit Title	Chemical technologies-2
Course Unit Code	CHEM 5010
Type of Course Unit	Elective
Level of Course Unit	
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1

department

Laboratory (hour/week)	-
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	Aynura Aliyeva
Name of Lecturer (s)	Aynura Aliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

Information about the refining of oil and gas products, the stabilization methods, the study of their physicochemical properties, the heat, optical, electrical, physicochemical and other properties, the processing of oil in atmospheric and atmospheric-vacuum installations, used raw materials and the quality characteristics of used raw materials and ready products, the characteristics and application of petroleum, kerosene, diesel fuel and mineral oil fractions obtained from different processing installations, thermal, thermocatalytic processes- pyrolysis, catalytic reforming, catalytic cracking, hydrocracking and alkylation processes. All petroleum fuels and many materials are produced by processing of crude oil in petroleum refineries. Petroleum refineries also supply feedstock to the petrochemicals and chemical industry for producing all consumer goods from rubber and plastics (polymers) to cosmetics and medicine. This course addresses petroleum refining to review how a variety of physical processes and chemical reactions in separate refinery units are integrated to process compliant fuels and materials.

Objectives of the Course:

This course will present an overview of the modern, integrated petroleum refinery, its feedstocks, product and the processes employed to convert crude oil and intermediate streams into finished products. Hydrocarbon chemistry, crude oil properties and fuel product quality will be discussed. Each refining process will be presented, covering operating description and conditions, feedstock and catalyst selection, product yields, and the relationship between process parameters, unit performance and product output and properties. This course provides major insights into both primary and secondary processes like Atmospheric Distillation, Vacuum Distillation, Catalytic Cracking, Hydrocracking, Catalytic Reforming, Coking, Visbreaking in a typical refinery The impact of each process on environmental regulations and pollution control is also discussed.

Learning Outcomes

Lear	uning Outcomes	
At th	e end of the course the student will be able to	Assessment
1	explain the origin of crude oil, its recovery, processing, transportation, physicochemical properties and classification of crude oil.	1,2
2	use the formulas to determine the main parameters of oil and oil products.	1,2
3	identify key characteristics and variables of crude oil and other gas and liquid feed streams for refineries.	1,2,3
4	explain refinery operations.	1,2,3
5	understand catalytic cracking, catalytic reforming, coking and alkylation principles	1,2
6	understand pollution control requirements.	1,2
7	use petroleum refining terminology.	1,2,3
Asse	ssment Methods: 1. Final Exam, 2. Midterm Exam 3. Presentation	
Cour	se's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4

2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying 3 out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3				
3	engineering in	the basics of mathematics, algorithmic principles and methods of computer the modeling, to design of chemical engineering systems, analyze and using statistical methods.	4		
4	in engineering	the techniques, materials, skills and modern engineering tools which are used and to carry out industrial and chemical processes, control them and to apply neering principles at designing of these processes.	5		
5	solving these	ose and use existing technologies, materials while undertaking project tasks and issues in chemical engineering and ability to eliminate malfunctions that may trial and chemical processes or in laboratory equipment.	4		
6		gn systems, components, units and processes that meet the requirements, count natural limitations such as economics, ecology, security and social	4		
7	Ability to use foreign source	the language skills to exchange and obtain some knowledge gained from the s.	3		
8		yze the problem, to identify the basic requirements, to justify the idea and tate the results and to compare them.	3		
9	•	erstand professional, ethical, legal and security issues and the responsibilities for engineering.	4		
10	engineering sl	rk productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, hods and guidelines.	4		
		vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)			
	se Content				
Weel	k Chapter	Topics	Exam		
1	[1]. Chap.1	Introduction. Introduction to petroleum refinery. Characterization of crude oil. Composition of crude oil. Hydrocarbon Groups. Complex Hydrocarbons. Non-Hydrocarbons or Hetero-Atomic Compounds. Physical properties. Origin of hydrocarbons. Crude conditioning and storage.			
2		Petroleum products and test methods.			
-	[1]. Chap.2	Crude oil analyses. Domestic fuels. Liquified petroleum gas. Kerosene. Automotive fuels. Octane number. Diesel fuels. Cetane number. Seminar 1. Introduction to petroleum refinery. Petroleum products and test methods.			
3		 Automotive fuels. Octane number. Diesel fuels. Cetane number. Seminar 1. Introduction to petroleum refinery. Petroleum products and test methods. Petroleum products and test methods. Additives. Aviation fuels. Furnace fuels. Lubricating oils. Carbon black feed stock. Bitumen. Petroleum coke. 			
	[1].	 Automotive fuels. Octane number. Diesel fuels. Cetane number. Seminar 1. Introduction to petroleum refinery. Petroleum products and test methods. Petroleum products and test methods. Additives. Aviation fuels. Furnace fuels. Lubricating oils. Carbon black feed stock. Bitumen. Petroleum coke. Processing operation in petroleum refinery. Crude oil receiving. Desalting of crude oil. Distillation and stripping. Atmospheric distillation. Atmospheric distillation unit. Seminar 2. Processing operation in petroleum refinery. Atmospheric distillation unit. 			
3	[1]. [1].	 Automotive fuels. Octane number. Diesel fuels. Cetane number. Seminar 1. Introduction to petroleum refinery. Petroleum products and test methods. Petroleum products and test methods. Additives. Aviation fuels. Furnace fuels. Lubricating oils. Carbon black feed stock. Bitumen. Petroleum coke. Processing operation in petroleum refinery. Crude oil receiving. Desalting of crude oil. Distillation and stripping. Atmospheric distillation. Atmospheric distillation unit. Seminar 2. Processing operation in petroleum refinery. Atmospheric 			

	Chap.3	Propane deasphalting process.	Propane deasphalting unit.	
	Chup.5		n. Vacuum distillation unit. Solvent extraction.	
		A furfural extraction unit.		
7	[2].	Processes in oil refinery		
/	Chap.3	Thermal processes. Visbreakin		
8				Midterm
		Processes in oil refinery		
9	[2].		of the delayed coking process. Flexicoking.	
,	Chap.3	Schematic of the Flexicoking		
		Seminar 4. Processes in oil res	finery. Thermal processes.	
	[0]	Processes in oil refinery		
10	[2].	-	and Cetane Numbers. Catalytic Cracking.	
	Chap.3	Scheme of the catalytic cracking	ts for Catalytic Cracking. Product Distribution.	
		Processes in oil refinery		
	[2].	-	ns and Thermodynamics. Feed Pretreatment.	
11	Chap.3		of the reforming process. Reactors.	
	F	-	finery. Catalytic Cracking process.	
	[2]	Processes in oil refinery		
12	[2]. Chap.3	Alkilation. Reactions. Process	es Using Liquid Acids as Catalyst. Schematic	
		of alkylation with sulfuric acid	l.	
		Processes in oil refinery		
			g. Reactions and Thermodynamics. Processes.	
12	[2].	Trickle bed reactor. Simplifie		
13	Chap.3	trickle bed reactor. Environme		
	1	process.	d Thermodynamics. Reactor. Hydrocracking	
		-	finery.Hydroprocessing. Hydrotreating.	
		Production of Light Alkenes		
	[2]		ynamics. Mechanism. Kinetics. The Industrial	
14	[2].		ck on Steam Cracker Operation and Products.	
	Chap.4	Simplified flow scheme of a s		
		Furnace. Coke formation.		
		Methanol		
	[2]. Chap.6		eactions, Thermodynamics and Catalysts.	
15			oduction. Methanol Synthesis. Synthetic Fuels	
	_	and Fuel Additives. Fischer–T Seminar 7. Production of Light	-	
16		Seminar 7. Floduction of Ligi	it Aikenes.	Final
16				1 11141
	nended Sour	ces		
TEXTB		Chaudei Funda (1. C.)		
	-		bleum and petrochemical engineering., 2011	Second Edition
	2.Jacob A. N 2013	iounjii, whenter wakkee, Annene	es E. Van Diepen Chemical process technology,	Second Eutholi,
REFER				
		ustin Shreves Chemical Process	Industries, Fifth edition	
Assessm	-			
Attendar		A	least 75% class attendance is compulsory	
Presentat	tion	20%		
Quiz		10%		

Seminars	0%			
Midterm Exam	20%	Written Exam		
Final Exam	50%	Written-Oral Exam		
Total	100%			
Assessment Criteria				
Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial University				
for Undergraduate Studies				
Course Policies				
Attendance of the course is mandatory.				
Late assignments will not be accepted unless an agreement is reached with the lecturer.				

Students cannot use calculators during the exam.

Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course			5

Chemical engineering (CHEN), "Technology of organic substances and high molecular

compounds" department

Course Unit Title	Chemical Technologies-3
Course Unit Code	CHEM 5011
Type of Course Unit	Elective
Level of CourseUnit	-
National Credits	0
Number of ECTS Credits Allocated	5

1
0
-
-
Narmina Guliyeva
Narmina Guliyeva
-
Face to Face, Seminar
English
-
11 -

Plastics are very broad category of materials. They include most elastomers (such as rubber), adhesives (such as epoxies and acrylics), fibers (such as Nylon and Polyesters), and traditional engineering plastics. Plastics is more common name for Polymers. Polymers have been under development since the eighteenth century. In the last few decades, polymers have been replacing other materials in an increasing number of products. It is therefore important for modern materials engineers to understand the fundamental concepts of engineering polymers and be able to select, modify, and develop the proper polymer for a certain performance.

Objectives of the Course:

the main goal

- familiarize students with the technological processes carried out at factories in Azerbaijan.

- present polymers as an engineering material and emphasize the basic concepts of their nature, production and properties. Polymers are introduced at three levels; namely, the molecular level, micro level and macro level. Thanks to the knowledge of all three levels, the student can understand and predict the properties of various polymers and their effectiveness in various products. The course also aims to familiarize students with the principles of polymer processing technology and design considerations using engineering polymers in Azerbaijan.

Learn	Learning Outcomes				
At the	At the end of the course the student will be able to Assessment				
1	Polymers from the Molecular viewpoint including basic concepts in organic chemistry, polymerization processes, thermoplastics and	1,3			
2	thermosets, and copolymers. Know the structure of polymeric substances	1,2,3			
3	List the types of polymerization reactions	1,2,3			

4 Know the structure and physical properties of polymers 1,3 5 Be able to synthesize polymers 1,3 5 Be able to synthesize polymers 1,3 Course's Contribution to Program Cl. 1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. 4 2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 7 Ability to unadyze the pr			
Assessment Methods: 1. Final Exam, 2. Presentation, 3.Midterm, Course's Contribution to Program I Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. 4 2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 7 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 9 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3 3	4	Know the structure and physical properties of polymers	1,3
Course's Contribution to Program CL 1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. 4 2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 <td>5</td> <td>Be able to synthesize polymers</td> <td>1,3</td>	5	Be able to synthesize polymers	1,3
CL CL 1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. 4 2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to use the language skills to exchange and obtain some knowledge gained ritically evaluate the results and to compare them. 3 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engincering. 3 10 </td <td>Asses</td> <td>sment Methods: 1. Final Exam, 2. Presentation, 3. Midterm,</td> <td></td>	Asses	sment Methods: 1. Final Exam, 2. Presentation, 3. Midterm,	
1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. 4 2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 9 Ability to understand professional, ethical, legal and security issu	Cours	e's Contribution to Program	
mathematics, physics, chemistry and chemical engineering. 4 2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 7 Ability to audize the results and to compare them. 3 9 Ability to understand professional, chical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3			CL
while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses. 3 3 Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 4 Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 7 Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them. 3 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3	1		
computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4 A bility to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. 5 A bility to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 1 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 9 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3	2	while carrying out the experiments and to obtain and extract chemical	
which are used in engineering and to carry out industrial and chemical processes, 5 control them and to apply chemical engineering principles at designing of these processes. 5 5 Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. 4 6 Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects. 4 7 Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources. 1 8 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 9 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3	3	computer engineering in the modeling, to design of chemical engineering	
project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.46Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.47Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.18Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.39Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.310Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant3	4	which are used in engineering and to carry out industrial and chemical processe control them and to apply chemical engineering principles at designing of these	s, 5
requirements, taking into account natural limitations such as economics, ecology, security and social aspects.47Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.18Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.39Ability to understand professional, ethical, legal and security issues and the 	5	project tasks and solving these issues in chemical engineering and ability t eliminate malfunctions that may occur in industrial and chemical processes or	
gained from the foreign sources.18Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.39Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.310Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant3	6	requirements, taking into account natural limitations such as economics,	
idea and critically evaluate the results and to compare them. 3 9 Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3	7		
responsibilities characteristic for engineering. 3 10 Ability to work productively in multidisciplinary groups, especially in projects requiring engineering skills and to carry out all work in accordance with relevant 3	8		
requiring engineering skills and to carry out all work in accordance with relevant 3	9		
laws, regulations, standards, methods and guidelines.	10		

CL: Contribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)						
Course Contents						
Week	Chapter	Topics	Exam			
1	[1], p.357	Production of Polymers: Introduction				
2	[1], p.357-360	 Polymerization Reactions, Step growth Polymerization. Chain growth Polymerization, Radical and Coordination Pathways. Coordination Pathways Sem: Production of Polymers. Polymerization Reactions, Step growth Polymerization 				
3	[1], p.363-366	Polyethenes – background information. Catalyst development. Classification and properties. Applications				
4	[1], p.366-375	Monomer Production and Purification. Polymerization – Exothermicity .Production of Polyethenes Sem: Polyethenes – background information. Production of Polyethenes.				
5	[2], p.1-11	Industrial production of polypropylen. Manufacturing process of polypropylen Molecular structure – tacticity . Crystal structure of polypropylene. Isotactic polypropylene (ipp). Syndiotactic polypropylene (spp). Atactic polypropylene (app). Degradation optical properties				
6	[2], p.1-11	 Industrial production of polypropylen. Manufacturing process of polypropylen Production. Catalysts. Industrial processes. Manufacturing from polypropylene.biaxially oriented polypropylene (bopp). Applications Sem: Industrial production of polypropylen. Manufacturing process of polypropylene. 				
7			Midterm			
8	[3], Chapter 4 p. 70-85	Plastic industries. Raw materials in plastic industry Sem: Plastic industries. Raw materials in plastic industry				

9	[3], Chapter 4 p.85-94	Plastic industries, manufacture processes. Condensation polymerization products	
10	[3], Chapter 4 p.94-98	Plasticindustries.Manufactureprocesses.AdditionpolymerizationSem: Plastic industries, manufacture processes	
11	[3], Chapter 4 p.98-101	Alloying and blending, Natural products cellulosa derivatives. Laminates and foams.	
12	[3], Chapter 5 p.103-105	Rubber industries natural rubber Sem: Alloying and blending, Natural products cellulosa derivatives.	
13	[3], Chapter 4 p.105-120	Rubber industries. Synthetic rubber	
14	[3], Chapter 5 p.105-122	Rubber industries. Synthetic rubber. Rubber compounding Sem: Rubber industries. Synthetic rubber	
15	[3], Chapter 5 p.122-126	Rubber industries . Rubber derivatives. Rubber fabrication	
16			Final
	mended Source BOOK(S)	ces	

1. Jacob A. Moulijn , Michiel Makkee , Annelies E. van Diepen. Chemical Process Technology 2nd Edition, Kindle Edition, 2003

2. Hideki Sato, Hiroyuki Ogawa, Review on Development of Polypropylene Manufacturing Process Sumitomo Chemical Co., Ltd.. Process & Production Technology Center, 2005

3. George T. Austin. Shreve's Chemical Process Industries, Production Technology Center, 2010

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminar	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam

Total 100%						
Assessment Criteria	Assessment Criteria					
Final grades are determined acc	ording to the	e Academi	c Regulations	of Azerbaijan	State Oil and İndustry	
University						
Course Policies						
• Attendance of the course is	mandatory.					
• Late assignments will not b	e accepted u	inless an ag	greement is rea	ched with the	lecturer.	
• Students cannot use calcula	tors during	he exam.				
• Cheating and plagiarism w	ill not be tole	erated. Che	eating will be p	enalized acco	rding to the Azerbaijan	
State Oil and Industrial Un	iversity Gen	eral Studei	nt Discipline R	egulations		
ECTS allocated based on Stud	ECTS allocated based on Student Workload					
Activities			Number	Duration (hour)	TotalWorkload(hour)	
Course duration in class143					42	
Preparation for Presentation			1	10	10	
Self-study			14	4	56	
Tutorials			14	1	14	
Midterm Examination			1	3	3	
Preparation for midterm exam			1	10	10	
Final Examination			1	3	3	
Preparation for final exam			1	18	18	
Total Workload					150	
Total Workload/30(h)				150/30		
ECTS Credit of the Course					5	

Chemical engineering (CHEN) program, Department of "Petrochemical technology and

industrial ecology".

Course Unit Title	Process operations in chemical and biochemical
	engineering
Course Unit Code	ENG 3201
Type of Course Unit	Compulsory
Level of Course Unit	3 rd year CHEN program
National Credits	0
Number of ECTS Credits Allocated	4
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	-

Year of Study	3
Semester when the course unit is delivered	6
Course Coordinator	Aynura Aliyeva
Name of Lecturer (s)	Aynura Aliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	CHEM 3101 Chemical Engineering Thermodynamics-2
Recommended Optional Program Components	-

Information about the basic principles of process operations in chemical and biochemical engineering, unit operationsfluid flow processes, heat transfer processes, adsorption, crystallization, evaporation, distillation and etc., introduction to biochemical and microbiological applications to chemical, commercial and engineering processes.

Objectives of the Course:

In <u>chemical engineering</u> and related fields, a process operation is a basic step in a <u>process</u>. Unit operations involve a physical change or chemical transformation such as fluid flow processes, heat transfer processes, adsorption, separation, crystallization, evaporation, distillation, filtration, extraction and other reactions. The objective of the course, as implied by the course content above is to introduce fundamental biochemical and chemical engineering concepts primarily to chemical engineers. The course does not assume any biological background or any prior courses in biology or microbiology, although it certainly helps to have some. To accommodate those who do not have the biological background, the course will first survey the basic ideas from microbiology, biochemistry..

Lear	ning Outcomes			
At th	e end of the course the student will be able to	Assessment		
1	fully understand key concepts of process operations in chemical and biochemical 1,2 engineering			
2	apply theory to practical experimental problems.	1,2,3		
3	explain the basic principles of various process operations in chemical and biochemical engineering	1,2		
4	identify, formulate, and solve complex chemical and biochemical engineering problems	1,2,3		
5	compare and evaluate different processes in chemical and biochemical engineering	1,2		
6	explain the most common unit operations and give examples of industrial processes in which each of the operations occur 1,2,3			
7	develop some skills about biochemical and chemical processes1,2,3			
Asse	essment Methods: 1. Final Exam, 2. Midterm 3. Presentation			
Cou	rse's Contribution to Program			
		CL		
1	Ability to solve complex issues and tasks by using the principles of mathematics, physic chemistry and chemical engineering.	es, 4		
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.			
3	and syntheses. Ability to use the basics of mathematics, algorithmic principles and methods of computer 4 engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods. 4			

n engineering chemical engine Ability to choo olving these occur in indus Ability to desi aking into accurs aking into accurs oreign source Ability to use oreign source Ability to analeritically evalue Ability to und characteristic Ability to und characteristic Ability to wo engineering sl tandards, met ntribution Le Contents [1] Chap. 1	the techniques, materials, skills and modern engineering tools which are used g and to carry out industrial and chemical processes, control them and to apply neering principles at designing of these processes. ose and use existing technologies, materials while undertaking project tasks and issues in chemical engineering and ability to eliminate malfunctions that may strial and chemical processes or in laboratory equipment. ign systems, components, units and processes that meet the requirements, count natural limitations such as economics, ecology, security and social the language skills to exchange and obtain some knowledge gained from the es. lyze the problem, to identify the basic requirements, to justify the idea and uate the results and to compare them. lerstand professional, ethical, legal and security issues and the responsibilities for engineering. rk productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics Introduction. Nomenclature of enzymes. Commercial Applications of	5 4 4 2 3 4 4 4 4 5
olving these occur in indus Ability to desi aking into accus oreign source Ability to use oreign source Ability to anal critically evalue Ability to und characteristic Ability to wo engineering sl tandards, met ntribution Lee Contents Chapter [1] Chap. 1	issuesin chemical engineering and ability to eliminate malfunctions that may strial and chemical processes or in laboratory equipment. ign systems, components, units and processes that meet the requirements, count natural limitations such as economics, ecology, security and social the language skills to exchange and obtain some knowledge gained from the ess. lyze the problem, to identify the basic requirements, to justify the idea and uate the results and to compare them. lerstand professional, ethical, legal and security issues and the responsibilities for engineering. ork productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	4 2 3 4 4
aking into accuspects. Ability to use foreign source Ability to analeritically evalue Ability to analeritically evalue Ability to und characteristic for Ability to wo engineering sl tandards, meter ntribution Lecontents Contents Chapter [1] Chap. 1	count natural limitations such as economics, ecology, security and social the language skills to exchange and obtain some knowledge gained from the es. lyze the problem, to identify the basic requirements, to justify the idea and uate the results and to compare them. lerstand professional, ethical, legal and security issues and the responsibilities for engineering. ork productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	2 3 4 4
Ability to anal critically evaluation Ability to und characteristic Ability to wo engineering sl tandards, met ntribution Lec Contents Chapter [1] Chap. 1	es. lyze the problem, to identify the basic requirements, to justify the idea and uate the results and to compare them. lerstand professional, ethical, legal and security issues and the responsibilities for engineering. ork productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	3 4 4
Ability to und Ability to und Ability to wo engineering sl tandards, met ntribution Les Contents Chapter [1] Chap. 1	uate the results and to compare them. lerstand professional, ethical, legal and security issues and the responsibilities for engineering. ork productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	4
Ability to wo engineering sl tandards, met ntribution Le Contents Chapter [1] Chap. 1	for engineering. for engineering. ork productively in multidisciplinary groups, especially in projects requiring kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	4
contents Contents [1] Chap. 1	kills and to carry out all work in accordance with relevant laws, regulations, thods and guidelines. vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High) Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	1
Contents Chapter [1] Chap. 1	Topics Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	Exam
Chapter [1] Chap. 1	Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	Exam
[1] Chap. 1	Introduction. Biochemical Engineering. Bioprocess. Enzyme kinetics	Exam
Chap. 1	Biochemical Engineering. Bioprocess. Enzyme kinetics	
F13		
[1] Chap. 2	Enzymes. Simple enzyme kinetics. Other influences on enzyme activity. Seminar 1. Bioprocess. Enzyme kinetics	
[1] Chap. 2 [2] Chap.4	Enzyme kinetics. Bioprocess/fermentation technology. Fermentation. Bioreactors.	
[1] Chap.4	Industrial application of enzymes Introduction. Organic chemistry of carbohydrates. Seminar 2. Industrial application of enzymes	
[1] Chap.10	Downstream Processing Introduction. Major process steps in downstream processing.	
[3] Chap.8 [4] Chap.5	Fluid flow processes.Transportation of fluids. Piping and instrumentation. Introduction.Valve selection. Pumps. Pumps selection. Selection of fans, compressors and jet ejectors.	
[3] Chap.15	Heat exchange equipments. Design and selection of heat exchangers. Condensers. Reboilers.	
		Midterm
1	Equipment selection, specification and design. Solid-solid separations. Liquid-solid cyclones. Flotation separators. Magnetic [4] separators. Chap.10 Liquid-solid (solid-liquid) separators. Filtration. Filters. Centrifuges. Sedimentation centrifuges and filtration centrifuges.	
	[3]	Chap.3 Seminar 3. Downstream Processing. [3] Heat exchange equipments. Chap.15 Design and selection of heat exchangers. Condensers. Reboilers. Equipment selection, specification and design.

1	E 43		I
	[4]	Equipment selection, specification and design.	
	Chap.10	Separation of dissolved solids. Evaporation. Evaporators. Crystallisation.	
10	[3]	Crystallisers.	
	Chap.16	Liquid-liquid separations. Decanters (Settlers).	
		Equipment selection, specification and design.	
		Separation of dissolved liquids.	
		Solvent extraction and leaching. Solvent extraction (liquid-liquid extraction).	
11	[4]	Leaching.	
11	Chap.10	Gas-solids separations (gas cleaning) Gas-cleaning equipment	
		Gas-liquid separators. Vertical separators and horizontal separators.	
		Seminar 5. Evaporation. Evaporators. Liquid-liquid separations. Decanters	
		(Settlers).	
		Equipment selection, specification and design.	
10	[4]	Mixing equipment.	
12	Chap.10	Gas mixing. Liquid mixing. Inline mixing. Stirred tanks.	
		Reactors. Principal types of reactor.	
		Distillation.	
10	[3]	Flash distillation. Continuous distillation with reflux (rectification). Batch	
13	Chap.18	distillation.	
	1	Seminar 6. Mixing equipment.	
	E 4 3	Separation columns	
14	[4]	Continuous distillation: Process description. Reflux considerations.	
	Chap.11	Continuous distillation: Basic principles .Other distillation systems.	
		Adsorption.	
15	[3]	Adsorption. Adsorbent and adsorption processes. Adsorption equipment.	
15	Chap.25	Seminar 7. Adsorption. Adsorbent and adsorption processes. Adsorption	
	1	equipment.	
16			Final
10			

Recommended Sources

TEXTBOOK

1. R. Dutta Fundamentals of biochemical engineering, Springer Verlag, 2008

2. John E. Smith Biotechnology book, Fifth Edition, Cambridge University Press, 2009

3. Warren L.McCabe, Julian C.Smith, Peter Harriott Unit operations of chemical engineering, Fifth Edition, McGraw-Hill Education, 1993

4. Coulson & Richardson's Chemical engineering, Volume 6, Fourth edution, Chemical Engineering Design . SINNOTT, 2005

REFERENCES

- Ernest E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol.-I Gulf Publishing Company, Houston, 1999
- Philip C. Wankat Separation Process Engineering, Third Edition, prentice Hall, 2011
- Seader, J.D.; Henley, E.J. *Separation Process Principles*. Second Edition, John Wiley & Sons, New Jersey, 2006.

Assessment

Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	-	
Midterm Exam	20%	Written Exam

Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial University for Undergraduate Studies

Course Policies

Attendance of the course is mandatory.

Late assignments will not be accepted unless an agreement is reached with the lecturer.

Students cannot use calculators during the exam.

Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and

Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload			
Activities	Number	Duration	Total
Acuvites	INUMBER	(hour)	Workload(hour)
Course duration in class	14	3	42
Preparation for presentation	1	7	7
Self study	14	3,5	49
Tutorials	14	0.5	7
Midterm Examination	1	3	3
Preparation for midterm exam	1	7	7
Final Examination	1	3	3
Preparation for final exam	1	7	7
Total Workload		1	120
Total Workload/30(h)	120/30		
ECTS Credit of the Course			4

Chemical engineering (CHEN) program, Department of "Petrochemical technology and

industrial ecology".

Course Unit Title	Chemical process flowsheeting
Course Unit Code	CHEM 5002
Type of Course Unit	Elective
Level of Course Unit	-
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	-
Year of Study	-

Semester when the course unit is delivered	-
Course Coordinator	Aynura Aliyeva
Name of Lecturer (s)	Aynura Aliyeva
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Components	-

The flowsheet is the key document in process design. It shows the arrangement of the equipment selected to carry out the process; the stream connections; stream flow-rates and compositions; and the operating conditions. It is a diagrammatic model of the process. Process flowsheeting concerns the use of computers to stimulate and design chemical plant of all types, such as petroleum refineries, petrochemical complexes or even food factories. This course introduction to the flowsheeting in process plant design and look at the various technic question which computer-aided systems may be based. For each one of these approaches the advantages and disadvantages are clearly stated and important methods are described in detail.

Objectives of the Course:

In chemical engineering, design usually refers to design of equipment or design of all or the major part of a chemical processing plant considering safety and economic aspects. The major objective is to understand how to invent chemical and refining process flowsheets, how to generate and develop process alternatives, and how to evaluate and screen them quickly. To simulate the steady state behaviour of process flowsheets using a suitable simulation software.

Lear	ning Outcomes	
At th	e end of the course the student will be able to	Assessment
1	understand and apply knowledge of this course.	1,2
3	understand the input/output structure of a flowsheet for a given manufacturing unit.	1,2
4	identify, formulate, and solve complex engineering problems	1,2,3
5	simulate the steady state behavior of process flowsheets at each level of process development.	1,2,3
6	synthesize and design flowsheet sub-systems, to develop the recycle structure	1,2,3
Asse	ssment Methods: 1. Final Exam, 2. Midterm 3. Presentation	
Cour	rse's Contribution to Program	
		CL
1	Ability to solve complex issues and tasks by using the principles of mathematics, physics chemistry and chemical engineering.	5, 4
2 Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.		-
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.	4

4	•	techniques, materials, skills and modern engineering tools which are used	5		
	•	d to carry out industrial and chemical processes, control them and to apply			
	chemical engineer	ring principles at designing of these processes.			
5	Ability to choose	and use existing technologies, materials while undertaking project tasks and	4		
5		olving these issues in chemical engineering and ability to eliminate malfunctions that may			
	•	and chemical processes or in laboratory equipment.			
6		systems, components, units and processes that meet the requirements,	4		
0	• •	nt natural limitations such as economics, ecology, security and social	7		
	aspects.	in material minimutions such as economics, econogy, security and social			
7	•	language skills to exchange and obtain some knowledge gained from the	2		
	foreign sources.				
8	Ability to analyze	the problem, to identify the basic requirements, to justify the idea and	3		
0		the results and to compare them.	5		
	erritearry evaluate				
9	Ability to underst	and professional, ethical, legal and security issues and the responsibilities	4		
	characteristic for	engineering.			
10	Ability to work t	productively in multidisciplinary groups, especially in projects requiring	4		
10	•	and to carry out all work in accordance with relevant laws, regulations,	-		
	standards, method				
$CI \cdot C$		(1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)			
		(1. Very Low, 2. Low, 5. Woderate, 4. Thgh, 5. Very High)			
	se Contents				
We ek	Chapter	Topics	Exam		
CK		Introduction.			
	[1]	The importance of chemical engineering plant design. Process design			
1	Chap.	development. Cost estimation. Optimum design. Practical considerations			
	1	in design.			
	[2]	Process Planning, Scheduling and Flowsheet Design			
	Chap.1	Introduction to Flow-sheeting. Organizational Structure. Process Design			
2	[3]	Scope. Role of the process design engineer. Flow-sheet presentations.			
	Chap. 4	Seminar 1. Organizational Structure. Process Design Scope. Role of the			
		process design engineer. Flowsheets-Types. Process Planning, Scheduling and Flowsheet Design			
	[2]	Flowsheets-Types. Chemical/Process engineering drawings.			
3	Chap. I	Block flow diagram (BFD), Piping and Instrumentation diagrams (P&ID),			
	Chapti	Process flow diagrams (PFD)			
		Process Planning, Scheduling and Flowsheet Design			
		Flowsheets-Types.Chemical/Process engineering drawings. Block flow			
	[2]	diagram (BFD), Piping and Instrumentation diagrams (P&ID), Process			
4	Chap. I	flow diagrams (PFD).			
	Chup. I	Seminar 2. Flowsheets-Types. Chemical/Process engineering drawings.			
		Block flow diagram (BFD), Piping and Instrumentation diagrams (P&ID),			
		Process flow diagrams (PFD) Process Planning, Scheduling and Flowsheet Design			
	[2]	Flowsheets-Types.Chemical/Process engineering drawings. Block flow			
5	Chap. I	diagram (BFD), Piping and Instrumentation diagrams (P&ID), Process			
	cp. r	flow diagrams (PFD).			
	[2]	Process Planning, Scheduling and Flowsheet Design			
6	Chap. I	Flowsheet Presentation. Flowsheet Presentation with simple examples.			
0	[3]	General arrangements guide. Computer-Aided Flowsheet			
	Chap. 4	Design/Drafting.			

Reco	mmended Sources	, I	1
16			Final
15	[3]	 Piping and instrumentation. Characteristics of valves and simulation methods Control valves (globe, butterfly, needle valves), isolation valves (gate, plug, ball valves), NRV (non-return valves) or check valves Seminar 7. 	
14	[3]	Piping and instrumentation. Characteristics of valves and simulation methods Control valves (globe, butterfly, needle valves), isolation valves (gate, plug, ball valves), NRV (non-return valves) or check valves Piping Piping	
13	[3]	Piping and instrumentation. Characteristics of valves and simulation methods Control valves (globe, butterfly, needle valves), isolation valves (gate, plug, ball valves), NRV (non-return valves) or check valves Seminar 6.	
2	[2] Chap. I	Process Planning, Scheduling and Flowsheet DesignWorking Schedules. Information Checklists. Standarts and codes.System Design Pressures. Time Planning and Scheduling. ActivityAnalysis.	
1	[2] Chap. I	 Process Planning, Scheduling and Flowsheet Design Line Symbols and Designations. (Line Symbols). Materials of Construction for Lines. Test Pressure for Lines. Seminar 5. Flowsheet symbols 	
0	[2] Chap. I	 Process Planning, Scheduling and Flowsheet Design Flowsheet symbols. (Process vessels, Pumps and solids, Storage equipment, Flow and instruments, Filters, evaporators and driers, Special types of descriptive flowsheet symbols, Commonly used instruments for process instrumentation flowsheets, Flow diagram symbols: valves, fittings and miscellaneous piping). 	
)	[2] Chap. I	 Process Planning, Scheduling and Flowsheet Design Flowsheet symbols. (Process vessels, Pumps and solids, Storage equipment, Flow and instruments, Filters, evaporators and driers, Special types of descriptive flowsheet symbols, Commonly used instruments for process instrumentation flowsheets, Flow diagram symbols: valves, fittings and miscellaneous piping). Seminar 4. Flowsheet symbols. 	
)			midterm
7	[2] Chap. I	 Process flow diagrams (PFD). Process Planning, Scheduling and Flowsheet Design Flowsheet symbols. (Process vessels, Pumps and solids, Storage equipment, Flow and instruments, Filters, evaporators and driers, Special types of descriptive flowsheet symbols, Commonly used instruments for process instrumentation flowsheets, Flow diagram symbols: valves, fittings and miscellaneous piping). 	
		Seminar 3. Flowsheets-Types. Chemical/Process engineering drawings. Block flow diagram (BFD), Piping and Instrumentation diagrams (P&ID), Process flow diagrams (PFD).	

2. Ernest E. Ludwig, Applied Process Design for Chemical and Petrochemical Plants, Vol.-I Gulf Publishing Company, Houston, 1999

3.Coulson & Richardson's Chemical engineering, Volume 6, Fourth edution, Chemical Engineering Design R. K. SINNOTT, 2005

REFERENCES:

- Anil Kumar, Chemical Process Synthesis and Engineering Design, Tata McGraw Hillpublishing Company Limited, New Delhi -1981.
 - A.N. Westerberg, et al., Process Flowsheeting, Cambridge University Press, 1979.
- Paul Benedek, Steady state flow sheeting of Chemical Plants, Elsevier Scientific Publishing company.2000

Assessment		
Attendance	0%	At least 75% class attendance is compulsory
Presentation	20%	
Quiz	10%	
Seminars	0%	
Midterm Exam	20%	Written Exam
Final Exam	50%	Written-Oral Exam
Total	100%	

Assessment Criteria

•

Final grades are determined according to the Academic Regulations of Azerbaijan State Oil and Industrial University

for Undergraduate Studies

Course Policies

- Attendance of the course is mandatory.
- Late assignments will not be accepted unless an agreement is reached with the lecturer.
- Students cannot use calculators during the exam.
- Cheating and plagiarism will not be tolerated. Cheating will be penalized according to the Azerbaijan State Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload

Activities	Number	Duration (hour)	Total Workload(hour)
Course duration in class	14	3	42
Presentation	1	10	10
Self-study	14	4	56
Tutorials	14	1	14
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		

Chemical engineering (CHEN) program, "Petrochemical technology and industrial ecology"

Course Unit Title	Principles of environmental me	onitoring	
Course Unit Code	CHEM 5007		
Type of Course Unit	Elective		
Level of Course Unit	year CHEN program		
National Credits	0		
Number of ECTS Credits Allocated	5		
Theoretical (hour/week)	2		
Practice (hour/week)	1		
Laboratory (hour/week)	-		
Year of Study	-		
Semester when the course unit is delivered	-		
Course Coordinator	Hamzayeva Nushaba		
Name of Lecturer (s)	Hamzayeva Nushaba		
Name of Assistant (s)	-		
Mode of Delivery Face to Face, Seminar			
Language of Instruction English			
Prerequisites	-		
Recommended Optional Program Components	-		
Course description:			
Environmental changes occur naturally and are a part of or cycles of the earth's environment have been studied within physics, and biology. Environmental scientists study the dyna relationships to soil- geologic materials, surface waters, the may see the atmosphere as being separated from the earth's composed of integrated and interconnected cycles and doma biological processes that cannot be easily separated from or Objectives of the Course:	the framework of three major scientific disc mics of cycles, such as the nitrogen and wa atmosphere, and living organisms. The un surface. However, to the trained observer th ins. Environment is a continuum of physica	ter cycles, and their trained observer ne environment is	
- The goals of this subject are to master the basic pr pling methods, environmental characterization, and central to environmental monitoring, including obje and mapping, and automated data acquisition In a field methodology used in soil, vadose zone, water	associated applications. In a first part, co actives and definitions, statistics and geo-st second part, techniques of sample collection	ver basic information atistics, field survey	
Learning Outcomes At the end of the course the student will be able to		Assessment	
	the minimum lag of my the section		
1 Ability to solve complex issues and tasks by usin physics, chemistry and chemical engineering.	g the principles of mathematics,	1,3	

department

At the end of the course the student will be able to Assessment 1 Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. 1,3 2 Ability to execute, coordinate, implement and substantiate laboratory processes while carrying out the experiments, 1,3 3 Ability to obtain and extract chemical compounds using standard methods and syntheses. 1,2,3

Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling and design of chemical engineering systems.	1,3	
Ability to analyze and interpret data using statistical methods.	1,3	
Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering.		
Abilityto carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.		
Ability to choose and use existing technologies, materials in chemical engineering while undertaking project tasks and solving these issues.	1,2,3	
must be able to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.	3	
must be able to design systems, components, nodes, and processes that meet the requirements, taking into account natural limitations such as economics, ecology, and social aspects.	1,2,3	
must be able to use the language skills to exchange and obtain some knowledge gained from the foreign sources.	1,2,3	
must be able to analyze the problem, to identify and identify the basic requirements, justify the idea and critically evaluate the results and compare them.	2,3	
must be able to use computer technology to gain knowledge from digital information sources.•	2,3	
must be able to understand professional, ethical, legal and security issues, as well as the responsibilities in engineering.		
must be able to work productively in multidisciplinary groups, especially in projects requiring engineering habits.	1,2,3	
ssment Methods: 1. Final Exam, 2. Presentation, 3-Midterm		
se's Contribution to Program		
	CL	
Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering.	4	
Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.		
Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods		
Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes		
Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate	4	
	Ability to analyze and interpret data using statistical methods. Ability to analyze and interpret data using statistical methods. Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering. Ability to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes. Ability to choose and use existing technologies, materials in chemical engineering while undertaking project tasks and solving these issues. must be able to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment. must be able to design systems, components, nodes, and processes that meet the requirements, taking into account natural limitations such as economics, ecology, and social aspects. must be able to use the language skills to exchange and obtain some knowledge gained from the foreign sources. must be able to use the problem, to identify and identify the basic requirements, justify the idea and critically evaluate the results and compare them. must be able to understand professional, ethical, legal and security issues, as well as the responsibilities in engineering. must be able to work productively in multidisciplinary groups, especially in projects requiring engineering habits. ssment Methods: 1. Final Exam, 2. Presentation, 3-Midterm se's Contribution to Program Ability to solve complex issues and tasks by using the principles of mathematics, physics, chemistry and chemical engineering. Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods Ability to choose and use existing technologies, materials while undertaking projects temp of the engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods	

	malfunctions equipment.	that may occur in industrial and chemical processes or in laboratory				
6	requirements	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.				
7	Ability to use from the fore	e the language skills to exchange and obtain some knowledge gained ign sources.	1			
8	•	alyze the problem, to identify the basic requirements, to justify the idea evaluate the results and to compare them.	3			
9	•	derstand professional, ethical, legal and security issues and the es characteristic for engineering.	3			
10	requiring eng	rk productively in multidisciplinary groups, especially in projects ineering skills and to carry out all work in accordance with relevant ions, standards, methods and guidelines.	3			
CL: C	Contribution Lev	vel (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High)				
Cou	rse Contents					
Weel	k Chapter	Topics	Exam			
1	[1] CHAP.II	Natural and anthropogenic pollution sources Seminar I: - Natural and anthropogenic pollution sources				
2	[2] Chap.III	ATMOSPHERE AS SUBJECT OF THE ANALYSIS.				
3	[3] Chap.III	Air sampling technique Seminar II : - Air sampling technique				
4	[3] CHAP.V I	Sampling of air using a liquid absorbers				
5	[2] CHAP.V	Sampling of air using a liquid absorbers Seminar III : - Sampling of air using a liquid absorbers				
6	[1] Chap.VII	Individually active and individually passive dosimetry.				
7	[3] Chap.IV	Desorption, concoction and identification of air tests from adsorbents. Seminar IV : - Desorption, concoction and identification of air tests from adsorbents.				
8			Midterm			
9	[2] Chap.VII	Water pollution sources. Quality indicators of water.				
10	[2] Chap. VI	Alkalinity and acidity of water Seminar V - Alkalinity and acidity of water				
11	[1] Chap.VII I	Definition of the oxygen dissolved in water and unstable organic matter				

	-							
	[1]	Biological ar	nd chemical o	oxygen demand (BOD and ChOD) in sewage				
12	[1] Chap.IV	Seminar VI - Biological and chemical oxygen demand (BOD and ChOD) in sewage						
13	[1] Chap.VI	.Structure and	d soil compo	sition				
	[3]	Purpose and						
14	Chap.V	Seminar VII	- Purpose and	d main objectives of monitoring				
15	15 [2] Chap.IX Assessment of anthropogenic impacts on the biosphere and forecasting of future ecological state							
16					Final			
Recomm TEXTB	nended Sourc	ces						
		and Cha 2.N.M. Applica Dordrec 3. D.A.	racterizatio Avouris, tions of E ht, 1995. Bruns and 0	an L. Pepper, Mark L. Brusseau, Environmenta on, press, 2004 B. Page. Environmental Informatics – Me Environmental Information Processing, Kluw G.B. Wiersma,Conceptual Basis of Environme tital, Perspective, 2000	thodology and wer Academic,			
Assessm	ent							
Attendar	nce		-	At least 75% class attendance is compulsory				
Presentation			20%					
Quiz			10%					
Seminar	s		-					
Midterm Exam			20%	Written Exam				
Final Exam			50%	Written-Oral Exam				
Total			100%					
Assessm	ent Criteria	I						
Final gra	ades are deter	rmined accordi	ng to the Aca	ademic Regulations of Azerbaijan State Oil and Ind	ustrial			
Universi	ty for Under	graduate Studi	es					
Course	Policies							
•	Attendance	of the course is	s mandatory.					
•	Late assignr	ments will not b	be accepted u	inless an agreement is reached with the lecturer.				
•	Students car	not use calcula	ators during t	the exam.				
•	Cheating an	d plagiarism w	ill not be tole	erated. Cheating will be penalized according to the	Azerbaijan State			

Oil and Industrial University General Student Discipline Regulations

ECTS allocated based on Student Workload			
Activities	Number	Duration	Total
Adivides	Number	(hour)	Workload(hour)

Course duration in class	14	3	42	
Presentation	1	7	7	
Self-study	14	4	56	
Tutorials	14	1	14	
Midterm Examination	1	3	3	
Preparation for midterm exam	1	9	9	
Final Examination	1	3	3	
Preparation for final exam	1	20	20	
Total Workload		1	150	
Total Workload/30(h)		150/30		
ECTS Credit of the Course			5	

Chemical engineering (CHEN) program, "Machine-building and materials science"

Course Unit Title	Principles of engineering materials
Course Unit Code	ENG 5003
Type of Course Unit	Elective
Level of Course Unit	-
National Credits	0
Number of ECTS Credits Allocated	5
Theoretical (hour/week)	2
Practice (hour/week)	1
Laboratory (hour/week)	0
Year of Study	-
Semester when the course unit is delivered	-
Course Coordinator	PhD Sayami Huseynov
Name of Lecturer (s)	PhD Sayami Huseynov
Name of Assistant (s)	-
Mode of Delivery	Face to Face, Seminar.
Language of Instruction	English
Prerequisites	-
Recommended Optional Program Compone	nt-s

department

Course description:

The course content is focused on the aspects of materials and materials properties. The course takes both a general approach and a detailed approach where the first includes: Materials and their roles and importance in modern society, materials and innovations, resources and availability, principles for systematic materials selection and principles for engineering design with respect to material properties. Detailed topics are: physical and mechanical properties including density, elastic properties, yielding and plastic properties, hardness and ductility. Relations between atomic structure, molecular structure, microstructure and material properties. Phase diagrams, heat treatment and strengthening mechanisms for important metals and alloys. Corrosion and degradation mechanisms. Important engineering materials will be emphasized: Carbon steels, steel alloys, light weight alloys, engineering polymers and fiber composites.

Objectives of the Course:

- be engaged in advanced education, research, and development in materials science and engineering, including materials discovery and/or processing, and in any professional disciplines.
- employ elements of the materials research process in their careers including the use of:
- demonstrate ethical responsibility and an appreciation for the societal and global impact of their endeavors and maintaining their intellectual curiosity through lifelong learning.

Learning Outcomes

At the e	end of the course the student will be able to	Assess	ment	
1	Determine structure and properties of metals, ceramics, polymers and cor	nposites.	1,3	
2	Explain relationships between structures and properties.			
3	Understand manufacturing, processing and fabrication of materials.			
4	Determine properties and performance of materials in different environments.			
5	Understand principles for rational and knowledge based selection of mate	erials.	1,2,3	
6	Solve basic engineering problems related to materials selection and components.			
7	Recognize the needs for specific material competence in different er projects.	ngineering	1,2	
Assess	ment Methods: 1. Final Exam, 2. Presentation, 3. Midterm Exam			
Course	's Contribution to Program			
			CL	
1	Ability to solve complex issues and tasks by using the principles of physics, chemistry and chemical engineering.		4	
2	Ability to execute, coordinate, implement, substantiate laboratory processes while carrying out the experiments and to obtain and extract chemical compounds using standard methods and syntheses.			
3	Ability to use the basics of mathematics, algorithmic principles and methods of computer engineering in the modeling, to design of chemical engineering systems, analyze and interpret data using statistical methods.			
4	Ability to use the techniques, materials, skills and modern engineering tools which are used in engineering and to carry out industrial and chemical processes, control them and to apply chemical engineering principles at designing of these processes.			
5	Ability to choose and use existing technologies, materials while undertaking project tasks and solving these issues in chemical engineering and ability to eliminate malfunctions that may occur in industrial and chemical processes or in laboratory equipment.			
6	Ability to design systems, components, units and processes that meet the requirements, taking into account natural limitations such as economics, ecology, security and social aspects.			
7	Ability to use the language skills to exchange and obtain some knowledge gained from the foreign sources.			
8	Ability to analyze the problem, to identify the basic requirements, to justify the idea and critically evaluate the results and to compare them.			
9	Ability to understand professional, ethical, legal and security issues and the responsibilities characteristic for engineering.			
10	Ability to work productively in multidisciplinary groups, especially in proj engineering skills and to carry out all work in accordance with relevant regulations, standards, methods and guidelines.	laws,	2	
	ntribution Level (1: Very Low, 2: Low, 3: Moderate, 4: High, 5: Very High	n)		
Course	Contents			
Week	Chapte Topics		Exam	

)) [1] hapte 17	CORROSION AND DEGRADATION OF MATERIALS	
[1] hapte		
hapte		
	Corrosion of Metals; Electrochemical Considerations; Corrosion Rates; Prediction of Corrosion Rates	
[1]	FORMS OF CORROSION	
hapte 17	Passivity; Environmental Effects; Corrosion Environments; Corrosion Prevention; Oxidation	
	PHASE DIAGRAMS	
[1] hapte Ə	Definitions and Basic Concepts; Solubility Limit; Phases; Microstructure; Development of Microstructure in Eutectic Alloys; Eutectoid and Peritectic Reactions	
[1]	IRON-CARBON SYSTEM	
hapte r 9	The Iron–Iron Carbide (Fe–Fe ₃ C) Phase Diagram; Development of Microstructure in Iron–Carbon Alloys; The Influence of Other Alloying Elements	
[1]	APPLICATIONS AND PROCESSING OF METAL ALLOYS	
[1] hapte 11	Nonferrous Alloys; Aluminum and its Alloys; Casting	
[1]	POLYMER STRUCTURES	
14	Chemistry of Polymer Molecules; Molecular Weight; Molecular Shape; Molecular Configurations; Thermoplastic and Thermosetting Polymers	
[1]	CHARACTERISTICS AND APPLICATIONS OF POLYMERS	
hapte 15	Mechanical Behavior of Polymers; Mechanisms of Deformation and for Strengthening of Polymers; Crystallization, Melting, and Glass Transition Phenomena in Polymers; Factors That Influence Melting and Glass Transition Temperatures	
		Midterm
	POLYMER SYNTHESIS AND PROCESSING	
[1] hapte 15	Polymerization; Polymer Additives; Forming Techniques for Plastics; Fabrication of Elastomers; Fabrication of Fibers and Films	
[1]	STRUCTURES AND PROPERTIES OF CERAMICS	
hapte 12	Silicate Ceramics; Carbon Nanotubes; Brittle Fracture of Ceramics; Mechanisms of Plastic Deformation	
[1]	APPLICATIONS AND PROCESSING OF CERAMICS	
hapte 13	Glasses; Glass-Ceramics; Clay Products; Refractories; Abrasives; Cements; Advanced Ceramics; Fabrication and Processing of Glasses and Glass- Ceramics	
[1]	PARTICLE-REINFORCED COMPOSITES	
[1] hapte 16	Large-Particle Composites; Dispersion-Strengthened Composites	
	7 1] apte 1] apte 1] apte 1] apte 1] apte 1] apte 1] apte 5 1] apte 5 1] apte 2 1] apte 3 1] apte 3	7 Passivity; Environmental Effects; Corrosion Environments; Corrosion Prevention; Oxidation 11 PHASE DIAGRAMS 11 petionitions and Basic Concepts; Solubility Limit; Phases; Microstructure; Development of Microstructure in Eutectic Alloys; Eutectoid and Peritectic Reactions 11 IRON-CARBON SYSTEM 12 intervention; Oxidation 13 IRON-CARBON SYSTEM 14 apte 15 The Iron-Iron Carbide (Fe-Fe ₃ C) Phase Diagram; Development of Microstructure in Iron-Carbon Alloys; The Influence of Other Alloying Elements 11 apte 12 APPLICATIONS AND PROCESSING OF METAL ALLOYS 13 pate 14 POLYMER STRUCTURES 15 POLYMER STRUCTURES 16 Characteristics AND APPLICATIONS OF POLYMERS 17 apte 18 Mechanical Behavior of Polymers; Mechanisms of Deformation and for Strengthening of Polymers; Crystallization, Melting, and Glass Transition Phenomena in Polymers; Factors That Influence Melting and Glass Transition Phenomena in Polymers; Factors That Influence Melting and Glass Transition Temperatures 11 apte 12 POLYMER SYNTHESIS AND PROCESSING 13 Polymerization; Polymer Additives; Forming Techniques for Plastics; Fabrication of Elastomers; Fabricat

		FIBEF	K-KEINFOR	RCED COMPO	DSITES					
13	 [1] Chapte Influence of Fiber Length; Influence of Fiber Orientation and Concentration; Metal-Matrix Composites; Ceramic-Matrix Composites; Hybrid Composites; Processing of Fiber-Reinforced Composites Structural Composites; Laminar Composites 									
	[1]			ormations						
14	14 Chapte r 10 The Kinetics of Phase Transformations; Metastable Versus Equilibrium States; Isothermal Transformation Diagrams; Continuous-Cooling									
	Transformation Diagrams [1] SHAPE-MEMORY ALLOYS									
15	Chapte									
15	r 10	-		ite; Crystallizat	ion; Melting; N	Aelting and Gla	ass			
		Transit	tion Tempera	atures						
16								Final		
10								exam		
Recom	mended S	ources								
TEXTE	BOOK(S)									
Assessi	ment									
			0%	At least 75%	of class attenda	ance is compuls	sory			
Attenda	ance		0%	At least 75%	of class attenda	ance is compute	sory			
Attenda	ance			At least 75%	of class attenda	ance is compute	sory			
Attenda Present Quiz	ance		20%	At least 75%	of class attenda	ance is compul	sory			
Attenda Present Quiz Semina	ance		20% 10%	At least 75%		ance is compul	sory			
Attenda Present Quiz Semina Midterr	ance tation urs m Exam		20% 10% 0%		n	ance is compul	sory			
Attenda Present Quiz Semina Midtern Final E	ance tation urs m Exam		20% 10% 0% 20%	Written Exar	n	ance is compuls	sory			
Attenda Present Quiz Semina Midtern Final E Total	ance tation urs m Exam	eria	20% 10% 0% 20% 50%	Written Exar	n	ance is compute	sory			
Attenda Present Quiz Semina Midtern Final E Total Assess	ance tation urs m Exam xam ment Crit		20% 10% 0% 20% 50% 100%	Written Exar	n Exam			Industrial		
Attenda Present Quiz Semina Midter Final E Total Assess Final g	ance tation urs m Exam xam ment Crit rades are c	letermine	20% 10% 0% 20% 50% 100%	Written Exar Written-Oral	n Exam			Industrial		
Attenda Present Quiz Semina Midtern Final E Total Assess Final g Univer	ance tation urs m Exam xam ment Crit rades are c	letermine	20% 10% 0% 20% 50% 100% ed according	Written Exar Written-Oral	n Exam			Industrial		
Attenda Present Quiz Semina Midtern Final E Total Assess Final g Univer	ance tation mrs m Exam xam ment Crit rades are c sity for Ur e Policies	letermine idergradi	20% 10% 0% 20% 50% 100% ed according uate Studies	Written Exar Written-Oral	n Exam ic Regulations o	of Azerbaijan S	tate Oil and			
Attenda Present Quiz Semina Midtern Final E Total Assess Final g University	ance tation urs m Exam xam ment Crit rades are c sity for Ur e Policies Late ass	letermine idergradu	20% 10% 0% 20% 50% 100% ed according uate Studies s will not be	Written Exar Written-Oral	n Exam ic Regulations of an agreement i	of Azerbaijan S	the lecturer			
Attenda Present Quiz Semina Midtern Final E Total Assess Final g Univer	ance tation urs m Exam xam ment Crit rades are c sity for Ur e Policies Late ass Cheating	letermine adergradu ignments g and pla	20% 10% 0% 20% 50% 100% ed according uate Studies s will not be giarism will	Written Exar Written-Oral	n Exam ic Regulations o an agreement i 1. Cheating will	of Azerbaijan S s reached with be penalized a	the lecturer ccording to	the		
Attenda Present Quiz Semina Midtern Final E Total Assess Final g Univers Course	ance tation mrs m Exam xam ment Crit rades are c sity for Ur e Policies Late ass Cheating Azerbaij	letermine idergradu ignments g and pla an State	20% 10% 0% 20% 50% 100% ed according uate Studies s will not be giarism will	Written Exar Written-Oral to the Academi accepted unless not be tolerated ustrial Universit	n Exam ic Regulations o an agreement i 1. Cheating will	of Azerbaijan S s reached with be penalized a	the lecturer ccording to	the		
Attenda Present Quiz Semina Midtern Final E Total Assess Final g Univers Course	ance tation mrs m Exam xam ment Crit rades are c sity for Ur e Policies Late ass Cheating Azerbaij	letermind idergradu ignments g and pla an State based of	20% 10% 0% 20% 50% 100% ed according uate Studies s will not be giarism will Oil and Indu n Student W	Written Exar Written-Oral to the Academi accepted unless not be tolerated ustrial Universit	n Exam ic Regulations of an agreement i I. Cheating will y General Stude	of Azerbaijan S s reached with be penalized a	the lecturer ccording to Regulations	the		
Attenda Present Quiz Semina Midtern Final E Total Assess Final g Univers Course	ance tation mrs m Exam xam ment Crit rades are c sity for Ur e Policies Late ass Cheating Azerbaij	letermind idergradu ignments g and pla an State based of	20% 10% 0% 20% 50% 100% ed according uate Studies s will not be giarism will Oil and Indu	Written Exar Written-Oral to the Academi accepted unless not be tolerated ustrial Universit	n Exam ic Regulations o an agreement i 1. Cheating will	of Azerbaijan S s reached with be penalized a ent Discipline I	the lecturer ccording to Regulations	the		

Presentation	1	10	10
Tutorials	14	1	14
Self-study	14	4	56
Midterm Examination	1	3	3
Preparation for midterm exam	1	10	10
Final Examination	1	3	3
Preparation for final exam	1	15	15
Total Workload	150		
Total Workload/30(h)	150/30		
ECTS Credit of the Course	5		